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Transitioning a Model-Based Software Engineering 
Architectural Style to Ada 95 

Abstract: This report describes the transition of an existing Model-Based 
Software Engineering architectural style to Ada 95. The report presents an 
overview of a software architecture for developing product families of domain- 
specific applications comprising reusable components, explains recognized 
deficiencies in the existing Ada mapping to this software architecture, and 
proposes solutions for correcting these deficiencies using a mapping to Ada 95. 
The report concludes with observations gained during the transition exercise 
and recommendations for future activities aimed towards deploying and 
enhancing the proposed mapping. 

1       Introduction 

Model-Based Software Engineering (MBSE) is a disciplined engineering approach that relies 
on constructing models of software applications within a product family to achieve the benefits 
of reuse, shorter time to market, and higher quality. The models provide the necessary 
information to support, economically and effectively, future changes to a software product 
family. MBSE relies upon proven domain analysis and engineering techniques to specify 
different models of a domain such that recurring patterns used in the software design of related 
applications can be discovered. 

Patterns of function, structure, and coordination capture fundamental abstractions about the 
product family. When such patterns are incorporated in a software architecture, designers can 
more readily develop applications that are upwardly compatible, and better manage software 
complexity and changes. Costs can be reduced since applications are not repeatedly 
developed from scratch and prior products are more easily reused. Unfortunately, current 
design techniques do not adequately address how to specify and use these patterns, nor do 
they adequately specify an infrastructure for composing such patterns from reusable 
abstractions. 

The Object Connection Architecture (OCA) is a generalized form of a group of related 
architectures that have been developed and refined by various projects within the SEI for 
several years. The OCA structural abstractions (as described in [Peterson 94]) have been 
mapped to Ada 83 [ISO 87], and this mapping has been used successfully as a part of MBSE 
to implement an application prototype from the Army movement control domain [Cohen 92]. 
However, the lack of suitable abstractions necessary to achieve effective software reuse 
[Cohen 90] compromises the utility of the resulting architecture for implementing a wider range 
of applications and has motivated a transition to Ada 95 [ISO 95]. 
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This report presents an overview of the OCA and the current Ada 83 mapping, a summary of 
issues raised by this mapping, proposals for how such issues may be addressed in a transition 
of the mapping to Ada 95 [ISO 95], and a partial Ada 95 mapping that supports distributed 
execution environments. In addition, recent work in software architecture specifications 
relating to the mapping is cited during the discussion. The principal objective of the mapping 
to Ada 95 is to exploit the potential of the OCA as a leveraging technology for establishing a 
framework within which reusable software components may be developed and reused to 
facilitate creating product families. In addition, this framework is specified in sufficient detail to 
facilitate the progressive transition of less formal analysis and design artifacts to an executable 
prototype of a distributed systems architecture. 
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Model-Based Software Engineering 

MBSE promotes a disciplined approach towards achieving product line engineering of 
software intensive systems.1 Figure 2-1 illustrates a conceptual overview of the principal 
activities and products of MBSE; the aggregation of domain analysis, design, and 
implementation is often referred to as domain engineering, as denoted by the shaded area.2 

As shown in this figure, a generic design results from completing the domain design activity. 

Domain Engineering  

Object Connection Architecture 

Architectural 
Principles 

Domain 

Models 
f 

Structural 
Abstractions 

Domain 
Design 

Templates 

Generic Design 
>.*/'{ 

Domain 
Implementation 

Reusable 
Implementation 
Architecture 

Reus able 
Con ponents 

\ 
  \ Code 

Application \ ^ 
Development       I "" 

formally modeled within MBSE 
 j/s, 

informally modeled within MBSE 
T 

System Specification 

Figure 2-1: MBSE Conceptual Process 

2.1   MBSE Overview 
In Figure 2-1, the architectural principles and generic design are informal specifications to the 
extent that, unlike the domain models, no formal models are currently provided (as denoted 
by the dashed lines). For example, a typical architectural principle might be the layering 
strategy of software components that must be reflected in the generic design as a means to 

1 Two draft SEI technical reports, "Implementing Model Based Software Engineering In Your Organization: An 
Approach to Domain Engineering " and "Software Engineering in a Product Family: A Model-Based Software 
Engineering Approach to Reuse", authored by James Withey in 1994 and 1995 respectively, provide a more 
detailed description of MBSE. 

2- Domain analysis, although not shown as a process in Figure 2-1, produces the domain models shown as the 
input to the domain design process. 

CMU/SEI-96-TR-017 



increase software reuse [Zweben 95]. A generic design results from completing the domain 
design activity. It is commonly represented as a system behavioral model that identifies the 
abstractions and interactions for applications of the product family obtained from information 
in the domain models. The generic design is the input to the domain implementation activity 
so that more specific information may be incorporated within the controlling framework of the 
structural abstractions, with corresponding templates, to transform the generic design into a 
reusable implementation architecture. Consequently, the mapping of the OCA structural 
abstractions to programming language templates adds formality to the architectural principles 
used to specify the generic design, allowing the resulting reusable implementation architecture 
to be used for application generation. Ideally, the reusable implementation architecture 
provides an executable prototype that evolves and matures throughout the lifetime of the 
product family. Once available, different applications may be developed from reusable 
components as indicated by the application development activity. The system specification 
identifies application-specific requirements. 

The mapping of the OCA structural abstractions into code templates facilitates developing the 
generic design into a reusable implementation architecture that may be executable. Moreover, 
depending upon the available abstractions, the reusable implementation architecture provides 
an infrastructure for both creating reusable components and integrating existing components. 
Thus, the domain implementation activity focuses upon adapting and refining the OCA 
mapping according to the specifications contained in the generic design; for example, the 
generic design may include requirements for a particular software quality attribute [Bass 94] 
(in addition to the reusability attribute). The templates specify the data types, features, 
operations, and performance that are inherited in the reusable software architecture. In 
addition, the templates avoid overspecification by not dictating particular environmental 
capabilities such as the capacity of processing resources that are required to execute 
applications in the product family. 

2.2   OCA Legacy 
The legacy for the OCA derives from previous SEI architecture development experiences. The 
first development of an OCA-like architecture was performed by the Ada Simulator Validation 
Project (ASVP) in 1986 and 1987. [Lee 88] described an abstraction-oriented view of flight 
simulations, with object managers providing abstractions for real-world aircraft parts working 
together as complex systems under the control of an executive. The systems communicated 
through connection packages, which were responsible for maintaining linkages between 
import and export data for each system. The structural abstractions described in the report are 
the foundation of the OCA. 

Two projects originated from the work performed by the ASVP, the Software Architecture 
Engineering (SAE) and the Real-Time Simulator Projects. Each was funded by different 
sponsoring organizations and focused on enhancing the ASVP architecture in various ways. 
The SAE work culminated in the development of the Object Connection Update (OCU) 
architecture, which was used in several application areas, including a missile radar seeker 
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system, a mine sweeping trainer/simulator, and a joint service electronic warfare simulation 
environment. [Rissman 90] provides a good description of many aspects of the OCU model. 
The Real-Time Simulation Project work culminated in an approach called Structural Modeling, 
which has been used in multiple flight simulators built under the direction of the Air Force 
Aeronautical Systems Command (ASC), including those for the B-2, ATF, and C-17. Further 
information on Structural Modeling is provided in [Abowd 93]. Figure 2-2 shows the 
chronological development of the OCA.3 

1993-Present Object Connection Architecture (OCA) 

• signatures 

• distributed objects 

1989-1993 

Object Connection Update (OCU) 

• subsystems, 
imports, exports 
& controllers 

• surrogates 

Structural Modeling 

• executive-level 
components 

• periodic and 
aperiodic 
operations 

1986-1989 

Timeframe 

ASVP Architecture 

• objects 

• system aggregates 

• connections 

• executive 

Figure 2-2: OCA Legacy 

The Application of Software Models (ASM) Project investigated both of these architectures 
and found them to be lacking sufficient generality when attempting to build the system 
prototype previously mentioned. One of the major shortcomings was the inability of either 
architecture to specify operations over a wide range of data elements or with differing 
computational semantics in an efficient manner. This is due, in part, to the real-time nature of 

3-    It should be noted that the OCA and Structural Modeling activities are still ongoing as of the publication of this 
report. 
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the domains in which the previous architectures operated versus the more interactive nature 
of domains such as that of movement control. The development of the OCA sought to keep 
those features of its predecessors that supported a pattern-base architectural style while 
increasing its general utility. The notion of signatures is one of the means used to achieve that 
result. The signatures concept is explained briefly in Section 4.1 of this report.4 It accounts for 
a large amount of the decoupling of service description from callability needed to make 
distribution of objects possible. 

See [Peterson 94], pages 16 -18 for a more complete discussion of signatures. 
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3      Architectural Overview 

Reusable implementation architectures are derived from the OCA templates and a generic 

design. They provide 

• a framework for logically partitioning applications 

• a model for coordinating and connecting different components comprising 
applications 

• an infrastructure for composing applications from existing or newly 
developed reusable components 

A Partitioning Framework 

Client/Serve-    Q 

Object Connection 
Architecture 

Compositional 
"infrastructure 

Coordination Model 

Figure 3-1: OCA Conceptual View 

Figure 3-1 illustrates a conceptual view of the OCA as the unification of three guiding principles 
that underlie sound architectural styles: a partitioning framework, a compositional 
infrastructure, and a coordination model. Each principle provides a set of rules as denoted 

below. 

1. The partitioning framework specifies the rules for designating and aggregat- 
ing structural abstractions. The partitioning rules aid in defining where domain 
information and/or functional entities fit in an overall framework. 

2. The compositional infrastructure specifies the rules for integrating objects into 
the structural abstractions. Objects are any software entities that provide the 
low-level services required by the structual abstractions. 

3. The coordination model specifies the rules for connecting structural 
abstractions and for establishing communications mechanism between them, 
as needed. 
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The locus of unification shifts depending upon the generic design in order to achieve a 
reusable implementation architecture. For example, the locus of a typical client/server 
architecture is shown in Figure 3-1 as defined by a partitioning framework (designation of client 
and server processes) and a coordination model (the sequence of interactions between clients 
and servers). Templates for implementing the patterns conforming to these rules are included 
as a mapping to a programming language.1 Since these templates take a canonical form, they 
become the design patterns for applications. It is in this context that the OCA is discussed in 

subsequent sections. 

3.1   OCA Principles 
The underlying architectural principles of the OCA are driven by the requirement to maximize 
object reuse across a product family. A reusable implementation architecture is a blueprint for 
developing applications of the product family. 

The notion of a reusable object and its associated operations (services) is fundamental to 
understanding the OCA. Objects represent common capabilities or properties of the product 
family with well-defined service interfaces, and encapsulated state and behavior. Such objects 
provide a higher, more understandable, and more systematic level of abstraction than 
traditional data and procedural abstractions. This reflects the emerging trend to represent an 
application domain as a continuum of object abstractions. 

This notion is widely used in developing reusable software components and is intuitive from 
the name Object Connection Architecture. The OCA depends upon reusable objects that are 
consistent with the information available from the domain models.2 Such objects may be 
created independently of the OCA or they may already exist in legacy applications from the 
domain. 

More important, but less accepted, is the notion of connected objects. This notion derives from 
an exposition of a software architecture [Shaw 93] that emphasizes rigorously specifying the 
partitioning and interconnectivity properties to be enforced upon a system's functional 
components. The distinction between a functional entity, a component, and a connectivity 
entity, a connector, is offered as a progressive step towards enhancing the compositional and 
partitioning properties of a software architecture [Shaw 94a]. A functional component 
represents the locus of computation and state; whereas a connector represents the locus of 
relations among components. It is this approach to partitioning and connectivity together with 
a clearly defined coordination model [Carriero 92] that are the important architectural 
principles of the OCA. 

1. The term OCA mapping is used throughout this report to connote the transformation of structural abstractions 
to the corresponding templates (or structural code units) of a programming language. 

2- It should be noted that while the currently defined OCA is described in the context of the three models of the 
SEI Feature-Oriented Domain Analysis (FODA) methodology [Kang 90] for identifying reusable objects, the 
models and methodology are incidental to this discussion of principles. 
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3.2 Object Reuse 
Object reuse requires incrementally composing reusable objects from existing objects to 
represent new or enhanced capabilities and features. It requires that all object interactions are 
conducted through well-defined interfaces corresponding to a particular compositional 
strategy. Objects must be free of uncontrolled interactions with other objects to safeguard the 
reuse of each object. For example, if two objects are mutually dependent upon common state 
information, a change to this state information by either object may potentially compromise the 
services of the other object; the absence of such deleterious interactions has been termed 
compositional orthogonality in an early effort to specify rules for writing reusable Ada 
components [Gargaro 87]. Moreover, the service interface provided by an object to a client 
must be insulated from any subtle expectations of how the services are implemented. If this 
insulation is defective, different implementations for the same service may unintentionally 
invalidate the services provided by client objects. For example, one implementation of a 
service may block execution of the client, while another implementation may guarantee never 
to block the execution of the client. Thus, it is important that any expectations of service quality 
be specified explicitly. Typically, this information is identified by the features specifications 
included in a domain model [Cohen 92] and must be reflected in both the generic design and 
templates for the service interface. 

3.3 Subsystem Reuse 
The capability to construct application-specific software from domain reusable objects 
requires that objects be connected through a controlled and systematic approach. For 
example, combining the capabilities of two objects to compose an aggregate capability may 
require that the result produced by the services of one object be used by the services of the 
other in a prescribed order. Thus, at a minimum, there is a need to introduce a client object 
that requests the services of the two objects in the prescribed order to provide the aggregate 
capability as a service. It is through the actions of this client that the two objects cooperate (are 
connected) without compromising their mutual independence; moreover, it is unnecessary for 
either object to be aware of the actions of the client or of each other. When this cooperation 
involves many objects and must be coordinated or synchronized in some disciplined manner, 
these actions are more complicated (for example, when the services of different objects are 
not executed serially and reside in a loosely coupled execution environment). Thus, such 
clients may use connector objects to satisfy the role described by [Shaw 94a]. In this role, 
connector objects may be viewed as abstract data types that provide a protocol for calling the 
client's constituent objects' services. 

3.4 Application Reuse 
The capability to partition an application into autonomous collections of software components 
amplifies the granularity of software reuse. To achieve this capability, the architectural 
principles and partitioning framework must guide allocating, configuring, and executing the 
application within the constraints imposed by the execution environment. For a large-scale 
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application, comprising many partitions, the application may span multiple execution 
environments; furthermore, the execution environments may comprise heterogeneous 

systems. 

Ultimately, effective application reuse requires defining three architectural tiers of reuse. The 
tiers facilitate using the structural abstractions to define consistent patterns of composition and 
control within applications of a domain rather than to implement low-level objects of the 
domain. These tiers are discussed in the next chapter in terms of object composition, 
connection, and configuration. 

10 CMU/SEI-96-TR-017 



4      Structural Abstractions and Reuse 

The preceding chapter presented the capabilities and principles that serve as the basis for 
reuse in the OCA. Three principal structural abstractions provide the patterns tor reuse that 
are consistent with this basis.1 These structural abstractions are 

• object managers 

• controllers 

• executives 

Objects represent the fundamental service providers within a domain. One or more objects 
become a reusable component when encapsulated by an object manager. It is through the 
interface to the object manager that the services of these objects are made available to 
potential clients in a manner that is consistent with a specific feature or function identified by 
the domain models. The object manager maintains a current state to control and coordinate 
the actions required to use the services of the different objects. In this way, objects remain 
independent of one another and the object manager. 

Controllers represent the role of connection objects within the domain. Through the 
specification of a controller, one or more object managers are aggregated to form a 
subsystem. The controller provides the interface to the subsystem and the necessary 
interconnection and data exchange among the object managers. Thus, a controller is a client 
of its constituent object managers so that the subsystem is implemented through the combined 
services of the object managers. In this way, each object manager is independent of its peers, 
and subsystems cooperate only through the data that need to be exchanged to execute the 
object managers' services. Whereas object managers must be called through their interface 
to perform a service, subsystems may execute concurrently with calls to their controller 
interface, thereby providing a more dynamic structural abstraction. For example, a controller 
may include default execution in the absence of an active call; the periodic reclamation of 
resources is a good example of such default behavior. 

Executives represent the role of a management object for the application. In contrast to a 
controller and an object manager, an executive provides a domain specific service. This 
service is consistent with the executive's role as a structural abstraction that encapsulates 
subsystem activities of an application within a particular execution environment. 

The three principal abstractions — object managers, controllers, and executives — facilitate 
the three levels of reuse. The object manager supports the object composition tier (for object- 
level reuse); the controller supports the connection tier (tor subsystem-level reuse); and the 
executive supports the configuration tier (tor application-level reuse). Object reuse is achieved 
from using the object class libraries that are typically available in an application domain. The 

1- It should be noted that the OCA defines a fourth structural abstraction termed a surrogate. This abstraction is 
a variation of a controller; however, in this report the distinction between controllers and surrogates is 
unnecessary. 
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resulting object managers are connected to build reusable subsystems using controllers. 
Finally, reusable subsystems are configured to build applications using an executive. 

The levels are illustrated in Figure 4-1. 

A Architectural Tier 

Configuration 

Connection 

Composition Object Reuse 

Object Managers 
Controllers 

+     Executive 

Structural Abstractions 

Figure 4-1: OCA Levels of Reuse 

The structural abstractions are completed by specifying two support abstractions: the import 
and export abstractions. The roles of these abstractions in the OCA are implicit from their 
names; they support the disciplined exchange of data among subsystems. Specifically, an 
import provides the input data from other subsystems to a controller; in contrast, an export 
provides the output data from a controller required by other subsystems. Through the import 
and export abstractions, the objects and object managers included in different subsystems 
remain opaque to each other. Figure 4-2 shows the relationship of the tiers of reuse and the 
structural abstractions. In this figure the italicized font denotes that at the named tier, the 
structural abstraction is defined to provide a reusable object. The normal font denotes that the 
structural abstraction is used at that tier. For example, object-level reuse is achieved by 
defining an object manager that uses objects that exist in the application domain.2 

Complementing the compositional abstractions are meta-abstractions called signatures. 
There are three different kinds of signatures corresponding to each level of reuse: (1) 
application signatures, (2) subsystem signatures, and (3) object signatures. Each kind of 
signature fulfills a similar role by describing the features available at each level of reuse so that 
the corresponding abstractions are not compromised by the client nor the service provider. For 
example, the application signature may be used to identify the various subsystems that 
comprise the application together with the features that describe the different configurations 
of these subsystems. In this way, an executive may determine what capabilities may be 
offered by the application simply by examining the signatures information and determining 

For completeness, objects are included in the figure as structural abstractions. 
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what subsystems are available. The executive has no knowledge of how a subsystem is 
implemented, while a subsystem implements a feature in a way consistent with the applicable 

signature information. 

LEVEL OF REUSE 

Structural 
Abstractions 

Object Subsystem Application 

Object Composition 

Manager Composition Connection 

Controller Connection Configuration 

Export/Import Connection Configuration 

Executive Configuration 

Figure 4-2: Relationship of Abstractions to Levels of Reuse 

Thus, signatures provide contracts for component reuse and correspond to the outputs of the 
domain models; for example, they contain information about the commonality and variability 
implemented in an application. Signatures do not presuppose a particular design 
methodology; they allow the systematic specification of an application within a product family. 

No restrictions are enforced on the execution of the OCA, although event and timeline 
synchronization at the configuration tier is required by the product family3 from which the OCA 
derives. Thus, coordination of subsystems in the configuration tier may be specified in a 
domain dependent manner. For example, subsystems may be allocated, invoked, scheduled 
for execution, and terminated either synchronously or asynchronously. Consequently, 
subsystems may be thought of as comprising an asynchronous ensemble [Carriero 92], where 
the problems of coordination are best understood as orthogonal to the application processing. 

The important architectural consideration is that there is a coherent coordination model 
associated with the execution of the structural abstractions encapsulating the reusable 
software components of an application. This coherency promotes potentially increased 
flexibility in the adaptation and configuration of an application to different execution 

environments. 

3-    The original coordination model was developed for the Air Vehicle Structural Model (ASVM) [Abowd 93] prod- 
uct family. 
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The executive at the configuration tier is limited to coordinating subsystem execution; 
whereas, at the connection tier, the controllers must coordinate both communication and 
execution of the object managers. It is this level of coordination that allows each object 
manager to be executed independently of its peers. Through such independence, the potential 
to support execution environments that gain leverage from contemporary distributed object 
technology [OMG 93] becomes achievable. Each controller and its associated export and 
imports provide the necessary connection to facilitate communication between subsystems 
similar to the interfaces connecting distributed objects. This, in turn, leads to more fault- 
tolerant applications when the executive provides capabilities to replace or replicate 
subsystems. To an extent, this approach is consistent with the earlier work of the SEI Durra 
Project [Barbacci 93] that allows an application to be described as a set of components, a set 
of alternative configurations for dynamically connecting components, and a set of runtime 
conditional configurations. Unfortunately, abstractions to express the configuration of 
applications comparable to those available in Durra have not yet been introduced into the 

OCA. 

In contrast to the configuration and connection tiers, coordination at the composition tier is 
determined by the object manager; no architectural constraints are placed upon how 
coordination is achieved among its constituent objects. Coordination depends only upon the 
implementation of the objects (in the class libraries) of the application domain. For example, 
objects implemented in Ada may be more adaptable to real-time coordination models 
[Gargaro 89, Fernandez 93] than objects implemented in other languages. 

4.1   Architectural Style Mapping 
In the original mapping, each structural abstraction is mapped to an Ada program unit 
(template). Except for the executive, which is the Ada main program, each abstraction 
comprises a package specification and, where appropriate, a package body declaration. 

Reusable objects are specified as object manager packages. Each object manager package 
name appends the suffix "„Manager" to the identity of the object. The specification declares 
the visible subprogram (services) and exceptions associated with the object. The types of the 
formal parameters of these subprograms are declared either in the corresponding object 
signatures package or software engineering unit packages4 on which each object manager 
semantically depends. In the package body, the object state data and subprogram bodies are 
declared, together with any local ancillary subprograms. The package body may depend 
semantically on other program units, providing these units do not encapsulate other objects. 

Each object signatures package name appends the suffix "„Signatures" to the identity of the 
object. The specification declares the features associated with the object as one or more 
enumeration types. The specified enumeration literals are used to select and control the 
services provided by the object. There is no body for an object signatures package. 

Software engineering packages declare data types common to a domain. 

14 CMU/SEI-96-TR-017 



Controllers are specified as subsystem controller packages. Each controller package name 
appends the suffix ".Controller" to the identity of the subsystem. The package specification 
declares the visible subprogram (services) associated with the subsystem. The types of the 
formal parameters of these subprograms are declared in the corresponding subsystem 
signatures package or the application signatures package on which the controller semantically 
depends. In the package body, the subsystem state data and subprogram bodies are 
declared, together with any initialization required by the subsystem. The package body 
semantically depends upon the object managers that implement the subsystem, the import 
packages of all subsystems with which it cooperates, and the corresponding subsystem export 

package. 

Each subsystem signatures package name appends the suffix ".Signatures" to the identity of 
the subsystem. The specification declares the features associated with the subsystem as one 
or more enumeration types. The specified enumeration literals are used to select the objects 
and services necessary to support the subsystem services. The package depends 
semantically on the corresponding object manager and object signatures packages. In 
addition, the specification declares any object signatures package data that must be re- 
exported, as defined in [Bardin 88], and all the different subsystem states. There is no body 
for a subsystem signatures package. 

B :  A depends on B 

Figure 4-3: Subsystem Template Dependencies 

The executive provides the initial thread of control in its role as the Ada main program; it 
depends upon the application signatures package and the different controller packages for the 
subsystems comprising the application. 

Figure 4-3 shows the principal semantic dependencies of the original Ada mapping for a 
subsystem template. The shading denotes subsystem-specific abstractions. The various 
shapes convey the intrinsic differences among the roles of the structural abstractions. Namely, 
signatures are passive and do not include any executable code; executives, controllers, and 
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object managers are active and may include one or more threads of control; exports and 
imports are passive but may include executable code. 

4.2   Ada Mapping Issues 
The original Ada mapping is a conservative mapping that uses only the most straightforward 
Ada constructs; the mapping omits the use of both generics and tasking. This has avoided 
many of the semantic fringes of the language where compiler implementations have been 
either unreliable or have varied, thereby protecting the portability and reliability of the mapping. 
However, this emphasis on portability and reliability has resulted in a mapping that does not 
fully exploit the architectural principles of the OCA. Both the composition of components and 
the coordinating interactions among components reflect a static and tightly coupled 
orientation. This approach is consistent with the original requirements of the Ada language 
[Whitaker 93]. However, for developing reusable software a more dynamic and loosely 
coupled object orientation requires support beyond that specified in the previous Ada 
standard. Such support is discussed in [Atkinson 91]. 

The static nature of the mapping is manifested in the semantic dependencies that must be 
explicitly specified among the different kinds of packages and the corresponding encodings 
necessary to locate and control their services. The encodings, due in part to the earlier 
limitations of Ada, enforce a static, inflexible structure on the architecture. This leads to a less 
abstract and more code-intensive mapping, making applications more difficult to comprehend 
and maintain, since packages must be distinguished using the special encodings. Although it 
is desirable for applications to adhere to a structural pattern or template that can be checked 
by the mapping semantics, the mapping should not be so restrictive as to require naming 
explicitly every possible package that provides data or some service. 

For example, consider the import package. Each import package associated with a subsystem 
must name the export packages associated with each subsystem on which it depends for data. 
The import package then explicitly maps this data to a function call in order to access the data. 
This requires that the function recognize each export package that may provide this data via 
an input parameter identifying a particular export package. Thus, the dependency has been 
introduced into the implementation in the form of a parameter value and the corresponding 
code that references the value. Moreover, each possible export package that is recognized 
must be handled separately. 

The tight coupling imposed by the mapping is evident from the specification of the executive 
as the single main Ada program. Unless the mapping relies upon a distributed implementation 
of the Ada task model or extra-linguistic mechanisms that support multiple cooperating main 
programs, a more loosely coupled mapping is not possible. Both of these options introduce 
undesirable ramifications that compromise the portability of the OCA. In addition, adapting the 
Ada task model to distribute an Ada program typically imposes restrictions upon the 
application and execution environment in order to avoid the overhead penalties of uncontrolled 
remote accesses. 
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The role of a controller package as a connection entity is significantly reduced by the imposed 
tight coupling. The strong encapsulation of its constituent service objects promotes locating 
loosely coupled objects across a distributed execution environment with the appropriate 
connection semantics supported by the controller. However, the current mapping is restricted 
to using the conventional assignment statement and subprogram call features of Ada to 
specify connection semantics. 

An observation in evaluating the mapping with respect to generic units is appropriate. Generic 
units have been offered traditionally as a feature of Ada that promotes implementing object- 
based reusable abstractions. However, the current mapping does not exploit the use of 
generic units. This omission may be explained partially by the fact that traditionally generic 
units have contributed primarily to the composition tier in providing reusable objects. 
Nonetheless, the use of generic units at the connection tier may lead to more reusable 
controllers by using the semi-abstract method of bequeathment [Cohen 90]. 

The use of the semi-abstract method, which is well-suited to the bottom-up compositional 
approach, suggests that object managers be specified as generic units. Each controller is then 
constructed from instantiations of object managers with each controller possibly being 
specified as a generic unit. Since a controller may be viewed as an abstraction that tends to 
exhibit the properties of strong coupling and weak cohesion, bequeathment allows for 
improved reuse. This suggestion is supported by the following eloquently stated conclusion 
[Cohen 90] regarding the semi-abstract method: "This cooperative interaction is the basis for 
the intermediate levels (classes) that constitute the proper level of abstraction for domain- 
specific reusable software."5 

Finally, a comparison of the current OCA mapping with the structural model from which it is 
derived shows that the mapping complies closely with the overall objectives of the structural 
model. For example, the broad objective of the structural model is "to take a problem domain 
of great complexity and scale and to abstract and scale it to a coarse enough level to make it 
manageable, modifiable, and able to be communicated to a diverse user and development 
community" [Abowd 93]. The current mapping clearly facilitates such an objective. In addition, 
it provides a specific instance of the definition proposed for a structural model: "A structural 
model is a reusable collection of classes of differing levels of abstraction providing the basis 
from which the flight simulator software is derived" [Abowd 93]. The one significant departure 
from the structural model, as mentioned previously, is that the configuration tier does not 
impose upon an application the specificity of the Timeline Synchronizer coordination model. 
Consequently, the executive provides a less time-dependent abstraction for coordinating the 
subsystems of the application. While this is suited to a wider range of applications, it would be 
unsuited to deadline driven real-time systems such as the ASVM. 

5-    In the mapping to Ada 95, tagged types have been used in preference to generics to achieve this capability. 
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5      Transitioning Mapping to Ada 95 

The previous chapter evaluated the current Ada mapping and identified compromises to the 
OCA architectural principles primarily because of language limitations in the original Ada 
standard. In contrast, this chapter examines Ada mapping issues that should be considered in 
subsequent mappings of the OCA with respect to architectural quality, components and 
connectors, distributed objects, and shared objects. 

5.1   Architectural Quality 
Recent work has suggested that a principal motivation for developing software architectures 
is to promote uniformly the extra-functional qualities* across all applications in the domain for 
which the architectures are designed [Bass 94]. Eight extra-functional qualities are defined; 
reusability is included as one of the eight qualities. Six of the other qualities are required by a 
domain-specific architecture since they typically complement or enhance software reuse. 

These qualities are 

1. ease of creation 

2. stability 

3. modifiability 

4. integrability 

5. portability 

6. reliability 

Only the performance quality is omitted since it is often considered application-specific rather 
than domain-specific. Thus, it is appropriate to examine a mapping with respect to the unit 
operations through which the extra-functional qualities may be influenced. Six unit operations 
are identified as having an influence upon achieving the extra-functional qualities; they are 

1. abstraction 

2. compression 

3. replication 

4. resource sharing 

5. separation 

6. uniform composition 

Each of these operations is des 

1-    The term extra-functional\s used in preference to the original term, non-functional, in accord with a suggestion 
from Mary Shaw. 
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A mapping should clearly delineate the way in which each unit operation is supported (or not 
supported). In this way, it should be apparent to what degree the extra-functional qualities are 
achievable. For example, a mapping that provides support for only one unit operation is 
unlikely to satisfy many (if any) of the extra-functional qualities. It is beyond the scope of this 
report to discuss how each unit operation may influence the extra-functional qualities. 

A mapping that supports abstraction hides implementation details. Consequently, there should 
be no dependencies upon a particular compiler or execution environment other than what is 
explicitly permitted by the Ada standard. For example, a mapping that depends upon the use 
of calls to a UNIX-like socket capability to support communication within a distributed program 
fails to hide implementation details. A preferred approach would be to eliminate the 
dependency by specifying remote subprogram calls to perform distributed communication that 
is portable among execution environments. When the mapping cannot be accomplished within 
the bounds of the Ada standard, then interfaces to other open systems standards through the 
OCA surrogate analog of the OCA controller may be used to hide implementation details. 
Moreover such surrogates may exploit the Ada bindings to the standards, although this is not 
always feasible. The use of the existing OCA mapping to Ada has exposed several 
implementation dependencies that were addressed through specialized interfaces when using 
the OCA to implement a domain-specific application [see Peterson 94: Appendix F]. However, 
these dependencies are not inherent in the OCA mapping. 

A mapping that supports compression may improve implementation execution time and 
performance efficiency. It was mentioned previously that performance is an application 
specific quality rather than a domain-specific quality. Consequently, the value of compression 
is more appropriately exploited once an architecture has been modeled and prototyped for the 
application. Moreover, compression conflicts with unit operations that are necessary to 
achieve other qualities enabling software reuse. Inevitably, compression leads towards a 
tightly coupled mapping; such a mapping is contrary to one of the OCA principles. Thus, 
compression support in an OCA mapping is not considered desirable. 

A mapping that supports replication promotes fault-tolerant implementations. An important 
architectural principle implicit in the OCA is the flexibility to replicate controllers and object 
managers under the regimen of the coordination model. While the contribution of replication 
to software reuse is problematical, a requirement for replication is motivated by the increasing 
trend in many domains to support nonstop applications. In addition, high-performance 
architectures rely on replication for massively parallel execution. Unlike more conventional 
techniques for improving performance efficiency, replication cannot always be retrofitted into 
a software architecture. Thus, replication should not be precluded explicitly by the mapping. 
In the existing mapping, the opportunity to replicate at the OCA level is handicapped by the 
compilation rules of the original Ada standard. 
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A mapping that supports resource sharing is essential for the OCA implementation. Implicit in 
the OCA is a requirement for sharing resources and the necessary synchronization to ensure 
logically consistent execution. Resource sharing is subsumed by the coordination model at the 
configuration and connection tiers. Since a surrogate is typical of a shared resource, the 
mapping of the coordination model may specify facilities to guarantee that multiple interactions 
for surrogate services are not susceptible to race conditions that lead to logically inconsistent 
execution. For example, a surrogate that encapsulates a single thread-of-control non-Ada 
application must synchronize execution of the application's components when called 
concurrently. Typically, this encapsulation is required for integrating legacy components and 
commercial-off-the-shelf (COTS) software products, such as database and graphical user 
interface systems, into an application using a pattern-based wrapper integration approach.2 

Frequently, past experience has indicated that using COTS products in a multi-threaded 
environment results in the unwanted blocking of concurrent threads; allowing such products 
to be isolated as a surrogate ensures that such blocking does not disrupt time-critical threads. 

A mapping that supports separation emphasizes the distinction among objects through 
rigorously defined interfaces. Only through separation is it practical to develop complex 
applications for distributed object execution and to organize development of large-scale 
applications. Fundamental to the OCA is the classification and separation of objects at 
different tiers of reuse. Ideally, a mapping should promote systematic separation in the context 
of object classification where the commonality and differences among objects are clearly 
delineated within a type class hierarchy. In addition, exploiting opportunities to refine 
separation using a hierarchy of generic compilation units facilitates the subsequent control, 
management, and reuse of applications. 

A mapping that supports uniform composition gains leverage from the composability 
properties of objects to achieve object reuse. The uniform composition of objects is an OCA 
principle that must be reflected in the mapping. Similar to separation, uniform composition is 
ideally facilitated in the context of object classification, whereby new or enhanced capability 
may be obtained from systematically refining a type-class hierarchy. In addition, the mapping 
of the configuration and connection tiers should exploit opportunities for dynamically 
composing capabilities. 

Finally, a mapping should promote the use of encapsulation to "layer" abstractions. "Layering" 
new abstractions upon existing abstractions intuitively increases software reuse. Recently a 
study has been conducted that indicates substantial improvements in both cost and quality 
when such "layering" is supported in a disciplined manner [Zweben 95]. 

2- For more information on this topic, see the paper by Diane Mularz, "Pattern-based Integration Architectures," 
in the proceedings of the Pattern Languages for Programs (PLoP'94) Conference, to be published by Addison 
Wesley. 
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5.2   Components and Connectors 
The ability to characterize entities within a software architecture in terms of whether they are 
components or connectors is a popular distinction between an architectural description 
language and a programming language [Shaw 94b]. The first-class status of connectors in an 
architectural description language is emphasized by including requirements to define 
semantics for connectors and their compositions; to generalize interconnectivity rules to 
address asymmetry, locality, and multiplicity; and to establish type classes for system 
configuration and organization. 

Programming languages are poorly equipped to describe connector semantics because of 
their traditional focus upon implementing functionality rather than controlling and mediating the 
interactions of independently composed objects. For example, in the current mapping, the 
import/export paradigm is insufficient to express a variety of possible interconnections. 
However, until there is community consensus on a common architectural description 
language, architectural mappings should attempt to emulate connectors using programming 
language constructs. This is particularly important in the OCA, which depends upon the 
composition and interconnection of objects and patterns for implementing applications within 
a specific domain. 

The OCA facilitates developing patterns of composition and interconnection through its three 
tiers of reuse. Compositional patterns may be stipulated by the mapping and checked by the 
compilation tool set. In contrast, interconnectivity patterns are more difficult to stipulate and 
check, since they involve roles and relationships rather than algorithms and data structures. 
This difficulty may be partly ameliorated by viewing connectors as objects of an abstract data 
type whose operations are governed by a set of rules (or protocol) and restrictions that guides 
their use (for example, by specifying a particular pattern of operation calls and the 
corresponding objects that may be connected through these calls). Unfortunately, it is unlikely 
that a mapping can enforce such rules for calling patterns with the same guarantees that are 
available for parameter type checking of a conventional call. 

Emulating a connector requires that its abstract behavior be understood independently of how 
it is used in the mapping. For example, this would allow the behavior of a controller to be 
understood regardless of the object managers that it interconnects. In addition, a controller 
should allow the permitted patterns of composition and interconnection to vary within the 
boundaries of the type classes of the connection objects that are used. However, such direct 
emulation of controllers as pure connection objects is beyond the scope of the revised 
mapping. 

While a formal definition of connectors and appropriate descriptive notations for them are 
subjects of ongoing research [Allen 94], exploiting the notion of connector-like templates by 
the mapping may achieve a more disciplined coordination model. 
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5.3   Distributed Objects 
Recently, the capability to employ a more object-based or object-oriented approach for 
interconnecting strongly typed objects in a distributed execution environment has emerged. 
Objects that claim to exemplify this capability have been termed distributed objects [Gargaro 
95] in Ada 95 and network objects [Birrell 94] in Modula-3. The premise underlying such 
objects is that their operations may be called when the caller (client) is located remotely from 
the callee (server). Moreover, there should be no semantic difference (other than 
performance) between the results of a remote call that connects objects in different address 
spaces and a local call that connects the same objects in a single address space. 

Because a strictly object-based or object-oriented approach prohibits clients from accessing 
server state directly, the necessity to call an operation promotes type-safe disciplined 
communication within a distributed execution environment. This requires support for inter- 
address space communication, light-weight threads (tasks), object type-classes with single 
inheritance, user-defined storage reclamation, and object marshaling to and unmarshaling 
from data streams. Figure 5-1 illustrates the common notion of the distributed object paradigm. 
A client uses (or calls) an object through operations made available by the interface of the type 
class for the object. Because references to the object are to a potentially different address 
space from that of the client, calls to its operations are considered to be dynamically bound 
remote calls to the server address space where the object is located. A server declares objects 
of the type class and provides implementations for each of the operations inherited by the 
different object types from the type-class interface; thus, there is an implicit dependency of 
each operation on the object and where it is declared. 

Visible 
Operations 

Inherited 
Operations 

Operation ^ 

Calls *** 

Operation Operation 
Address Space ^ 
Boundary ^        Different Implementations 

Figure 5-1: Distributed Object Paradigm 
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In Ada 95, a distributed object is an object whose services, implemented as primitive 
subprograms, can interconnect clients and servers that are executing in different address 
spaces and on different computers. The type of a distributed object must be declared as a 
tagged type in an invariant state package together with its primitive subprograms. A remote 
access type designating the corresponding class-wide type, declared in a package to which a 
remote categorization pragma applies, allows the primitive subprograms to be remotely 
dispatched (called) by dereferencing values of this access type. Both packages are restricted 
to avoid uncontrolled remote references and to prevent passing semantically inconsistent 
parameter values as subprogram arguments; for example, a local access value may not be 
passed as an argument. The object is created by the server and a remote access value 
designating the object is made available to clients. Typically, remote access values are passed 
to clients through an object request broker facility that may be application specific. A client 
simply dereferences the remote access value as the controlling operand of a dispatching 
primitive subprogram to achieve a remote call. Unlike the statically bound conventional remote 
procedure call paradigm, calls to distributed objects are dynamically bound; moreover, if there 
are no output or result parameters, the subprograms may be called asynchronously. 

Distributed objects capitalize on the object-oriented support provided by tagged types. Objects 
of types within the derivative class of a tagged type may use the normal extension and override 
features to harmonize with the location where the objects are declared. This offers more 
flexibility in a distributed application than a nondistributed application because of the potential 
variations in execution environments. For example, a service provided by an object may 
depend upon the local resources available to the partition in which the object is to be 
elaborated. In such instances, the inherited subprogram for this service must be overridden by 
a subprogram that is commensurate with the available resources, and an object of the 
corresponding derived type elaborated. 

Local Export Call 

r 
Controller 

V. 
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Object 
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A 

Connector 

Figure 5-2: Remote Connector Template 

24 CMU/SEI-96-TR-017 



Distributed objects may be used as remote connectors to achieve a more disciplined 
coordination model. For example, one such use is to map the import and export abstractions 
to distributed objects as depicted in Figure 5-2. In the figure, two subsystems (controller and 
dependent object managers) reside in different address spaces (denoted by the shaded 
rectangles). The exporting controller creates a locally accessible connector and makes it 
available to importing controllers through a remotely called subprogram. Thus, an output value 
from some object manager service may be exported to the connector using a local export call 
(i.e., a normal subprogram call). Conversely, an input value to some object manager service 
may be imported from the connector using a remote import call (i.e., a remote subprogram 

call). 

An advantage of using distributed objects in the OCA mapping is that it permits the same kind 
of analysis and reasoning to be applied in constructing an application regardless of whether 
the application is ultimately configured in a distributed or nondistributed execution 
environment. Also, the use of distributed objects in a mapping reflects the potential loose 
coupling of subsystems. 

5.4   Shared Objects 
Typically a shared object is accessible across a distributed execution environment without 
regard to its locality. This convenience of access is moderated by restrictions on the type of 
the objects and where the objects may be created. The motivation for shared objects is to 
support commonly used paradigms for data exchange in distributed execution environments 
where the cost of remote communication must be avoided. This implies that the address space 
of the shared object is reachable from all references without relying upon some underlying 
(and perhaps hidden) communications protocol. Ideally, a shared object is accessed with the 
same efficiency as a locally declared object. 

There is no architectural principle that requires the use of shared objects in a mapping. In fact, 
the permissive access promoted by such objects would seem to contravene the precepts of a 
disciplined coordination model. However, it is recognized that many contemporary distributed 
applications (e.g., AVSM) rely upon multiprogramming when configured for tightly coupled 
execution environments. In such environments, synchronized access to shared objects is an 
efficient and safe approach for exchanging data among components that execute 
independently. For example, in a straightforward adaptation of the current OCA mapping to 
Ada 95 there is the opportunity to use shared objects for the import and export abstractions. 
The respective templates would be specified as shared passive packages and assigned to a 
passive partition.3 

3- The intent of a passive partition is to represent a shared address space across one or more computers on 
which the application is configured. A shared passive package enforces compilation time restrictions that pre- 
clude a passive partition from having any runtime system dependencies or separate thread-of-control. 
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A mapping for subsystems to exchange data through a shared object must accommodate the 
potentially independent execution of subsystems on different computers. This requires that the 
coordination model incorporate some scheme for accessing shared objects. In Ada 95 this 
may be accomplished by declaring the object to be of a protected type; execution of each 
subprogram of the type is synchronized to serialize access to the shared object. Thus, a 
subprogram call to import or export a value is blocked until any in-progress call is completed, 
perhaps requiring some form of spin lock when calls originate from different computers. 

Local Export Call 
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Figure 5-3: Local Connector Template 

Figure 5-3 depicts a local connector template as a shared object. The abstraction is similar to 
the remote connector template except that the connector is shown as being locally accessible 
to both the exporting and importing subsystem controllers. In contrast to a remote connector, 
the input value to the object manager service is imported using a local import call. 
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6      Overview of Mapping to Ada 95 

The mapping of the structural abstractions to Ada 95 templates may be materialized using an 
abstraction-based, an object-based, or a distributed-object style mapping. In the revised 
mapping, a combination approach is followed. This allows a systematic transition of the 
existing mapping to a revised mapping using Ada 95 while implementing the 
recommendations presented earlier in the report. Important criteria of the revised mapping are 
to maintain fidelity to the structural abstractions and to avoid changes unless there is evidence 
of a significant benefit to software reuse. 

Mapping Style 

Distributed 
Object 

Object 
Based 

Abstraction 
Based 

..ill'1' 

\Distribution 
Concurrency 
Synchronization 

't Classes 
{Inheritance 
', Dynamic Binding 

Data Abstraction 
Encapsulation 
Strong Typing 

Object - Subsystem - Application Reuse 

Figure 6-1: Mapping Transition Approach 

Figure 6-1 illustrates the different features of the mapping styles that contribute to improving 
software reuse resulting from the transitional approach. For the purposes of this figure, the 
original mapping is characterized as an abstraction-based mapping. The object-based 
features are used to support an enhanced compositional framework, whereas the distributed- 
object paradigm is used to promote a straightforward partitioning framework and a consistent 
coordination model. In this figure, it is seen that the transition achieves improvements in 
object, subsystem, and application levels of reuse. 

Object reuse is improved by the introduction and use of type classes, inheritance, and dynamic 
binding into the composition tier mapping. Each object manager template belongs to a type 
class that provides an abstract interface specification of the services that may be used at the 
connection tier. Furthermore, implementations of an object manager may vary by dynamically 
binding to different objects based upon the features that are supported by the interface. 

Subsystem reuse is improved by the introduction and use of distribution, concurrency, and 
synchronization into the connection tier mapping. Each controller template belongs to a type 
class that provides an abstract interface specification of the subsystem services that may be 
used at the configuration tier. Each interface specification is defined to allow the corresponding 
service to be executed remotely; thus, the unit enclosing a controller and its dependent units 
are used to form a partition, the Ada 95 unit of distribution. In addition, connector templates 
are introduced as generic distributed objects to replace the export/import templates. These 
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templates may be used within a subsystem whenever object managers in different 
subsystems need to exchange data. Concurrency and synchronization controls to such data 
maintain the logical consistency of the data. Finally, implementations of a controller may vary 
by dynamically binding to different object managers based upon the features that are 
supported by the subsystem interface. 

Application reuse is improved by the introduction and use of distribution, concurrency, and 
synchronization into the configuration tier mapping. The executive provides an interface to the 
connection tier that allows controllers and connectors to become available for use as 
distributed objects. Depending upon the product line, the executive configures the subsystems 
for application execution by controlling the values of the features that are to be supported. 
These features determine the implementations of the different controllers that are called to 
provide the services of the corresponding subsystem comprising an application. The ability to 
distribute subsystems as partitions combined with the capability to support concurrency and 
synchronization of subsystem services provides a dynamic execution environment that is 
adaptable to a variety of distributed configurations without changing the executive, controller, 
connector, or object manager templates. 

Unlike the original mapping, the revised mapping adopts a less definitive specification style. 
This is partially due to the need to address more general-purpose application domains. For 
example, in the existing mapping, the services associated with objects are characterized in 
terms of three operations (Construct, Destruct, and Fefch); whereas in the revised mapping 
the services associated with objects may be characterized in terms of many different 
unspecified operations unless the objects have a specific architectural role, such as connector 
objects. Similarly, the revised mapping allows more flexibility in naming and structuring the 
templates comprising an application, while remaining consistent with the architectural style of 
the product line. This flexibility promotes a more systematic approach to adapting abstract 
object interfaces to domain-specific attributes and features. Moreover, it emphasizes that the 
organization of and patterns provided by the templates are essential contributions to 
supporting a reusable implementation architecture. Figure 6-2 summarizes the Ada 95 
features used in the revised mapping to achieve this transitional approach. 

For each structural abstraction (listed vertically),1 the supporting Ada 95 features (listed 
horizontally) are identified by a numeral denoting the type of support rendered. The features 
are subdivided to show their association with the three OCA axes of Figure 3-1. In many 
instances, an abstraction is supported by a combination of features; however, only the 
principal feature support is included in this figure. A brief explanation of the support denoted 
by each numeral is as follows: 

1-    The Export/Import abstractions have been recast into Connectors as discussed in Chapter 5. 
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Figure 6-2: Ada 95 Features Used in Revised Mapping 

Class-wide types (or more accurately, type-class hierarchies) facilitate en- 
capsulating legacy software as reusable objects at the compositional tier to 
provide different implementations of common application functionality. 

Class-wide types facilitate the construction of reusable object managers that 
are independent of any external state and the implementation of their constit- 
uent objects. 

Class-wide types facilitate the construction of reusable controllers that may 
select implementations of their constituent object managers corresponding to 
the variations (or different features) of common application functionality. 

Class-wide types facilitate the construction of connector type classes to im- 
plement export and import templates. 

Abstract subprograms specify common interfaces to object manager type- 
classes. 

Abstract subprograms specify common interfaces to controller type classes. 

Abstract subprograms specify the interface to the connector type class. 

Child units encapsulate the declaration of each object manager, controller, 
and connector type. In addition, they organize and structure the templates. 
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9. Partitions facilitate the distributed execution of subsystems. They comprise 
the library units of a subsystem, one of which must declare a controller type 
object. 

10. Partitions facilitate the location of local and remote connector objects for the 
distributed execution of an application. 

11. Protected types provide a default coordination scheme for local and remote 
connector objects. 

12. Remote calls facilitate the use of dynamically bound calls from the executive 
to controllers and from controllers to connectors in a distributed environment. 

13. Remote calls facilitate statically bound calls from controllers to the executive 
in a distributed environment. Such calls are typically used to configure and 
reconfigure an application. 

It is not possible within the scope of this report to present the complete templates for each tier 
of reuse. The following sections outline informally the mapping approach for each tier. In 
Appendices A - C, the corresponding templates for each tier are presented. These templates 
specify the compositional infrastructure, partitioning framework, and coordination model, and 
provide a basis for understanding the critical revisions to the original mapping. 

6.1   Composition Tier 
The composition tier of the OCA mapping supports object-level reuse through the templates 
shown in Figure 6-3. Common object manager functionality is specified in terms of the services 
that an object manager provides to the connection tier. The services form an abstract interface 
of the type class defining the object manager. Any object of a type derived from this type class 
inherits this abstract interface. 

Borrow Implementations 

(       Object A (       Object 
i Implementations     I •   • I   Implementations 

Figure 6-3: Mapping of the Composition Tier 
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Each service of an object manager may have one or more implementations that represent the 
variability of the different objects that are required to implement the functionality provided by 
the service. These different objects, in turn, represent common functionality previously defined 
in the domain. The differences in granularity of reuse between objects and object managers 
depend upon the particular models used to analyze the domain. For the purposes of the 
mapping, it is assumed that the objects exist in some programmatic form that allows them to 
be included as a part of the object manager. For example, if an object exists in the form of an 
Ada package, then the functionality is readily included; whereas if the object exists in some 
form of a class construct of C++, then the object must be placed within an Ada wrapper. 

The object implementations template provides the means for including objects into object 
managers through an abstract interface that is inherited from a signatures type class declared 
in the object signatures template.When an object is to be used by an object manager, an 
abstract interface must be included in the object signatures template to represent the object's 
services. This interface must be specified in a way that is consistent with the features that are 
available to describe domain variability for object reuse.Thus, it is through the object 
signatures that the object manager may borrow the implementations of the objects necessary 
to provide the functionality inherited from the template for the type-class abstract interface. 

Borrowing an implementation through the use of the object signatures template is the key 
aspect of the composition tier mapping that supports object reuse. For each object that may 
be included in an object manager, there must be a function that maps the object's functionality 
into a set of one or more features that correspond to well-defined variability among the 
different object implementations. In this way, an object manager may include objects that 
provide the required functionality defined by its abstract interface. 

For example, an object manager that is designed to write data to a communications network 
may use different objects depending upon the quality of service required. The features for 
quality of service are defined in the signatures package together with the corresponding 
abstract interface for the objects. The object manager borrows the implementation that 
provides the required service by creating an object through the mapping function and the 
features corresponding to the object implementation. 

6.2   Connection Tier 
The connection tier of the OCA mapping supports subsystem-level reuse through the 
templates shown in Figure 6-4. Common subsystem functionality is specified in terms of the 
services that a subsystem provides to the configuration tier. The services form an abstract 
interface for the type classes defining controller and connectors. Any controller or connector 
object of a type derived from these type classes inherits the corresponding abstract interface. 
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Figure 6-4: Mapping of the Connection Tier 

The template for connection type-classes allows both controller and connector objects to be 
referenced at the configuration tier without requiring explicit knowledge of their types. This is 
essential since the executive is responsible for accepting the different controllers and 
connectors for use as distributed objects irrespective of their type-class abstract interface. 

The connection type classes do not define an abstract interface since objects of this type are 
never called to perform a subsystem service. All subsystem services are performed using the 
type-class interface inherited by the controller template. Only when a subsystem service is to 
be called does it become necessary to recognize the type class for the interface. 

The abstract interfaces for controllers are specified in a manner that allows for distributed 
processing, such that calls to the corresponding implementation of their services are remote 
subprogram calls. In this way, a controller object may execute in a different address space 
from where the call was made. Thus, it is possible for each subsystem to execute in separate 
address spaces. For example, if the application is configured on a network of computers, each 
subsystem may execute on different computers. 

Similar to the composition tier mapping, controllers borrow implementations of object 
managers through the subsystem signatures template. However, in this case the signatures 
template does not provide an inherited interface as it simply depends on any object manager 
needed by the subsystems. When a controller wishes to call the services of an object 
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manager, the features controlling the variability of the object manager's implementation are 
used to borrow the corresponding implementation using a mapping function in the signatures 
template. Thus, the controllers are not required to depend upon the individual object manager 
templates but only upon the subsystem signatures template. 

The abstract interfaces for connector templates are defined to allow for the exchange of data 
among subsystems. Connectors may be specified to support different exchange protocols and 
data types identified by the domain models. Only the simple connector templates described in 
Sections 5.3. and 5.4 are included in the revised mapping. Each connector template may 
optionally depend upon a coordinator template when the exchange of data is to be insulated 
from concurrent access. Coordinator templates may be used to embed any required 
synchronization protocol into a connector implementation. 

6.3   Configuration Tier 
The configuration tier of the OCA mapping supports application-level reuse through the 
templates shown in Figure 6-5. Application-level functionality is achieved by calling the 
services of the controllers for the corresponding reusable subsystems comprising the 
application. Similar to the other two tiers, the implementations of the subsystem controller are 
borrowed through the use of the application signatures template. 

Inherit Accessibility 

Executive 

Borrow Implementations 

Controller Controller 

Figure 6-5: Mapping of the Configuration Tier 
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The application signatures package identifies the subsystems and connectors for the 
application. However, unlike the other two tiers, borrowing a controller implementation 
provides a more responsive computing environment than dynamically binding to the 
implementation's object managers directly. In the case of the configuration tier, requirements 
for software reuse must be accompanied with requirements for application reliability and fault 

tolerance. 

The executive template specifies a configuration interface that depends upon the connection 
type class from the connection tier. This configuration interface is called by the subsystem 
controllers to advertise their availability and non-availability to the executive. In addition, this 
interface is used to notify the executive that a subsystem has created a connector that may be 
accessed by other subsystems. Since the connection type class provides the type class 
through which the controllers and connectors are accessed, the configuration interface is said 

to inherit accessibility from the connection type class. 

Because the configuration interface is called from subsystem controllers that may be located 
in different address spaces (or partitions) from the executive, the services specified in the 
interface are callable remotely. The executive is responsible for managing these calls to 
establish and maintain the application's configuration. For example, unless the necessary 
subsystems have called the executive informing it of their availability, the executive may defer 
commencing execution of the application. Similarly, if a subsystem becomes unavailable, the 
executive may suspend or change the mode of an application to reflect this condition. 

Whenever a subsystem requires data from another subsystem, it must have access to a 
connector for the corresponding data type. A subsystem gains access to a connector using 
the configuration tier interface. When requesting access to a connector, a subsystem may 
specify that the connector be from the same subsystem as a previously accessed connector 
so that all data are obtained from the same subsystem. In contrast, a subsystem may request 
access to more than one connector for the same data type and import data values from 
different subsystems in the event that different subsystems have made available connectors 

for the same data type. 

The sequencing and control of calls for subsystem services by the executive is not specified 
in the revised mapping since this is regarded as application dependent. 
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7      Conclusions and Future Work 

This report has identified several issues in the existing OCA mapping to Ada. These issues 
limit the adaptation of the OCA to different domains and execution environments in its role as 
a generic design model with a domain engineering approach. The two most prominent 
limitations are the static dependencies imposed by the mapping and the lack of support for 
distributed execution of systems. Since both of these limitations may be ameliorated by using 
the object-oriented and partitioning features in Ada 95, a revised mapping to Ada 95 has been 
presented that pays special attention to exploiting these features. 

7.1   Lesson Learned 
In addition to the principal objective of transitioning the OCA mapping to Ada 95, the exercise 
provided some experience and insight into the challenge of using a programming language 
that supports type-safe object-oriented features for large-scale distributed systems. When the 
mapping was started, there was little documented experience with any similarly capable 
language available to guide the work. Thus, the approach was deliberately conservative. Only 
well-understood features were used and complex feature interactions were avoided. In 
particular, the use of genericity combined with object-oriented programming was restricted to 
those parts of the mapping that were not included in the current Ada 83 mapping (i.e., 

coordinators). 

The experience seems to support the expectation by many that Ada 95 will become the 
preferred programming language for developing and reengineering large-scale applications 
comprising heterogeneous systems. The ability to develop wrappers for legacy components 
and allow for them to be accessed across a network of computers appears straightforward for 
application writers, regardless of whether or not a reusable implementation architecture is 
specified. Moreover, the retention of a consistent unified semantic model across an application 
may offer a degree of control and integrity that is appealing to those applications considering 
the use of other alternatives such as using a mapping of CORBA/IDL to Ada 95 [OMG 95]. 

One particular issue that is central to the in-progress investigation is the integration of 
distributed objects within a unified coordination model for the OCA. Although not included in 
the mapping, different schemes for coordinating access to data that are enforced locally at the 
object level are possible. A variety of synchronization features are available in Ada to achieve 
such coordination. However, such schemes currently lack a formality (or paradigm) that allows 
improved reasoning about and understanding of a unified inter-tier coordination model. For 
example, in the more involved interactions among distributed objects, a local synchronization 
imposed by one object may conflict with that of another object, leading to possible 
compromises to the coordination among the architectural tiers of the application. Moreover, 
since the principal motivation for the OCA is to promote reusable components, it is desirable 
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that coordination contracts be clearly expressed in the specification of all templates, rather 
than embedded in the implementation of the template for a distributed object. Ideally, such 
contracts should be specifiable in a form so that they may be applied (or inherited) throughout 

the OCA at each tier of reuse. 

It is unclear from the in-progress exercise whether or not the above mapping techniques can 
be enhanced to allow for wider application in the OCA. The use of distributed objects may 
become excessively complex if applied as a mapping extension to represent object manager 
templates. Nevertheless, in the highly distributed execution environments of the future, the 
need to extend the composition tier mapping for distributed execution seems likely. The initial 
results of using distributed objects to enhance the organizational and communication patterns 
of the OCA are promising. In particular, the capability to specify a framework for integrating 
reusable objects into subsystems that may be situated across a network of computers 

removes a deficiency of the original mapping. 

The revised mapping does not mandate that applications conform to specific partitioning 
patterns. Rather the mapping manifests the pattern properties possessed by partitions so that 
an application may choose a pattern that attains the desired extra-functional qualities in the 
context of the OCA conceptual model. For example, one instance of an application may 
choose to map a single subsystem to a partition, while another instance may choose to map 
multiple subsystems to a partition. The difference in choice depends upon the execution 
environment. This tends towards a more dynamic view of linguistic support for distributed 
systems than what may be achievable from an Ada 95 implementation. For example, it 
suggests the need for a new linguistic construct similar to a partition type [Gargaro 90a, 
Gargaro 90b] and for configuration facilities such as those specified in Durra [Barbacci 93]. 
Nevertheless, this view remains an important guideline for implementing more reusable 
applications and for perhaps influencing the development of Ada 95 tool suites for distributed 

systems. 

In [Shaw 94b], six classes of properties characterizing an ideal architectural description 

language are postulated; these are 

1. composition 

2. abstraction 

3. reusability 

4. configuration 

5. heterogeneity 

6. analysis 

Results from this exercise indicate that, for the first four properties, Ada 95 provides a 
reasonable substitute until ideal architectural description languages emerge. Only for the 
analysis property, requiring that "it should be possible to perform rich and varied analyses of 
architectural descriptions," is there reason to believe that Ada 95 is seriously deficient. This 
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suggests that some of the problems with at least one existing language [Shaw 94b] have been 
remedied. However, a more complete and thorough study is required to substantiate this more 

optimistic opinion. 

In summary, the revised mapping maps subsystems to partitions at the connection tier where 
controllers import/export data using connectors to exchange data among subsystems. 
Controllers, and optionally connectors, are managed as distributed objects through the 
executive at the configuration tier. At the composition tier, class-wide types are used to provide 
an abstract interface through which object managers encapsulate and make available the 
services of reusable objects according to domain-specific implementation criteria that are 

specified in the corresponding Signatures. 

7.2   Future Work 
Once the mapping has been validated through use, there are several areas where future work 
may be continued. A near-term objective is to prepare an analysis of what actual benefits 
accrued from the revised mapping together with a comprehensive description of an application 
developed using the OCA templates. 

In addition, there are several more long-term proposals that need to be considered. For 
example, the OCA currently lacks a formalization that unifies the various intuitive concepts and 
views presented in this paper. A valuable contribution would be to examine the relationship 
among the architectural principles, the tiers of reuse, and the required structural abstractions 
(not necessarily those presented in this paper). A better understanding of this relationship may 
lead to eliminating some of the informality and conceptual overlap that often occurs in 
describing the OCA independently of specific OCA templates. Other examples would be the 
investigation of enhancing the OCA to support Durra-like configuration and reconfiguration 
capabilities to meet the increasing needs for fault-tolerant safety-critical applications, and the 
development of application generators using the OCA templates. 
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Appendix A     Composition Tier Mapping 
The mapping of the architectural abstractions to Ada 95 templates may be materialized using 
an abstraction-based mapping, an object-based mapping, or a combination of both. In the 
following partial mapping, a hybrid approach is proposed. This allows a systematic transition 
of the existing mapping to Ada 95 and implements the recommendations presented in the 
body of this report. The specification of the revised mapping has been balanced to encourage 
subsequent refinements and includes sufficient detail to allow evaluation of both the OCA and 
Ada 95 as tools that will contribute to developing reusable software architectures. It is likely 
that many of the rich abstraction, encapsulation, generic, and object capabilities of Ada 95 
have yet to be fully exploited in the proposed templates. 

The composition tier provides a disciplined method for using domain objects in a manner 
consistent with the models that describe the commonality and variability of objects comprising 
the application domain. The method specifies how to develop new, reusable domain-specific 
objects and how to reuse existing domain objects. Thus, the method may be viewed as 
supporting either a top-down or bottom-up paradigm for developing reusable objects. 

The composition tier comprises object managers. Subsystems, specified in the connection 
tier, use the services offered by one or more of the object managers via their controllers to 
perform application-specific actions. For each class of object manager types, a set of abstract 
services is specified. Through the implementation of these services, object managers are 
bound to the appropriate domain objects. In this way, object managers become components, 
where the services they provide reflect the attributes and features of the application domain 
by using well-understood commonality and variability as leverage to increase the reuse of 
domain objects.1 

Each implementation of an object manager type service uses one or more objects together 
with the necessary abstractions to control and sequence their execution. The synthesis of 
these objects provides the functionality required by the corresponding abstract services. The 
objects are not necessarily domain specific and may have one or more different 
implementations. A necessary requirement is that the objects' services do not compromise the 
infrastructure of the mapping. Thus, objects may be implemented in different languages 
providing that their services conform to the language-defined interfacing features of the 
mapping. 

Figure A-1 illustrates an informal overview of the composition tier mapping. In this figure, the 
composition interface is represented by one or more abstract object types. Different object 
managers (as denoted by the various shadings) depend upon each type to provide specific 
implementations using existing objects that are available in the domain. 

1-    Typically, this commonality and variability is formalized and captured in the models resulting from a domain 
analysis. 

CMU/SEI-96-TR-017 39 



Composition Interface 

Different 
Implementations 

Domain Objects 

A -> B : A depends on B 

Figure A-1:   Composition Tier Dependencies 

A.1    Composition Interface Mapping 

The composition interface consists of one or more abstract object specifications. An abstract 
object specification is provided by a type-class from which different object manager types may 
be derived. The abstract services are declared as primitive subprograms for the corresponding 
tagged type (i.e., the type of the controlling operand of each primitive subprogram) in a 
package that follows the structure of the Compositionjnterface package. This allows different 
implementations of the services to be specified by declaring a derived type in the type-class. 
The form of the Compositionjnterface packages is as follows:2 

with... 
package Compositionjnterface is 

type Abstract_Object is abstract tagged private; 
type Abstract_Object_Access is access all Abstract_Object'Class; 

procedure Object_Service 
(Control: Abstract_Object; Param :...;...) is abstract; 

Composition_Interface_Exvor: exception; 

2. In the following templates, italicized names are used to denote that the named construct is an exemplar of a 
construct with different names permitted by the mapping; e.g., Object_Service denotes one of possibly many 
differently named subprograms. 
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private 
type Abstract_Object is abstract tagged null record; 

end Composition Jnterface; 

In the above specification there may be one or more abstract subprograms declared to 
represent the services supplied by the types derived from the type AbstractJDbject. Similarly, 
each primitive subprogram may have one or more parameters, in addition to the mandatory 

controlling parameter named Control. 

A.2    Object Manager Mapping 
"The intent of the Object Manager is to provide a standard mechanism for invoking the 
operations needed to provide the services for the physical/logical object that is to become a 

part of a system." [Peterson 94, page 43] 

The abstract subprograms specify the services available through object managers that are of 
types in the type-class hierarchy derived from AbstractJDbject. These services may be called 
from the connection tier providing that an object of the type is accessible to a controller. Since 
objects of type AbstractJDbject cannot be declared, any object made accessible to the 
controller must be declared of a type derived from AbstractJDbject in a template that 
corresponds to the package Object_Manager. Furthermore, each abstract subprogram must 
be overridden. The Object_Manager package is declared as a child package of 
Compositionjnterface as follows: 

with Composition_Interface.Signatures; 
package Composition_Interface.Object_Manager is 

type Object_Manager is new AbstractJDbject with private; 
type Object_Manager_Access is access all Object_Manager; 

private 
type Object_Manager is new Abstract_Object with record 

Object_A : Signatures.Signature_Access := Signatures.Map(...); 
Object_B : Signatures.Signature_Access := Signatures.Map(...); 

end record; 
procedure ObjectJService 

(Control: Object_Manager; Param :...); 

end Compositionjnterface. Object_Manager; 

The specification of Object_Manager depends upon a child package, Signatures; this package 
is explained in a subsequent paragraph. For the purposes of introducing the implementation 
approach for object managers, it is sufficient to understand that Signatures declares reusable 
object types that may be constructed to implement the abstract subprograms. In the private 
part, the object manager type is extended with components of the reusable object types. 
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Consequently, each declaration of an object manager creates the necessary reusable objects 
whose subprograms are to be called by the implementation of its abstract subprograms. Within 
the body of each primitive subprogram of object manager there are calls to the appropriate 
objects from the Signatures type-class hierarchy. 

The mapping specifies that object managers are declared in child packages of the 
corresponding Compositionjnterface package. The parent-child composition provides an 
intuitive continuity between the abstract subprograms and their actual implementations. In 
addition, there are two reasons for requiring this composition. The first is to ensure that any 
additional mapping information in the private part of Compositionjnterface is visible to the 
object manager packages. The second is to allow the bodies of object manager packages to 
depend upon any additional private child packages of Compositionjnterface. This allows for 
subsequent extensions to the partial mapping. 

The implementation of the primitive subprograms are provided in the body of Object_Manager 

as follows: 

package body Composition_Interface.Object_Manager is 

procedure Object_Service 
(Control: ObjectJvfanager; Param :...;...) is 

begin 

Signatures.Serw'ce (Control.Object_A,...); 

Signatures.Sera'ce (Control.Object_B,...); 

end Object_Service; 

end Compositionjnterface. Object_Manager, 

Depending upon the processing to be performed, Object_Service may use one or more 
objects from different type-class hierarchies associated with the component extensions. What 
is left unspecified in the mapping is the actual code that sequences the calls to the various 
subprograms of these objects; this is beyond the scope of the current mapping. The mapping 
does not preclude Object_Service from calling its constituent services concurrently; in such 
instances, Object_Service would include any necessary concurrency control and 
synchronization. 

A consequence of this mapping is that, at the connection tier, a controller may select object 
implementations from the different object managers simply by referencing an object of a class- 
wide type that provides the desired implementation. In the course of its execution, a controller 
may use a combination of different object implementations. For example, as illustrated in 
Figure A-2, the abstract interface includes a type-class for a remote object type together with 
read and write services. 
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Figure A-2:   Composing an Abstract Interface 

From this type, derivate types for object managers may be declared to perform the actual read 
and write services based upon the features selected through the information in the remote 
object signature. The features allow the use of different communication protocols to implement 
the read and write subprograms for the remote object type using reader and writer objects that 
are assumed to exist as domain objects. Thus, as implied by the figure, a remote object may 
be read using the Transport Control Protocol (TCP) reader and written using the User 
Datagram Protocol (UDP) writer depending upon the quality-of-service feature that was 
specified for reading and writing in the respective object managers. In addition, the subsystem 
controller need only depend upon the abstract interface of the remote object type and not the 
specific object managers; this will be explained in Appendix B. Section A.5 describes the 
composition of an object that corresponds to this figure. 
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A.3    Signatures Mapping 
"For objects, Signatures consist of information about the details of the functionality, in 
particular the processing options, provided by the object's operations. Object signatures 
contain abstract names for services (and their underlying algorithms) provided by the objects, 
and hide the mapping of the abstract service (and the selected name) to the implementation 

of the service." [Peterson 94, page 17] 

The Signatures mapping specifies how reusable objects of the domain are encapsulated (or 
viewed) for use by object managers. In addition, the mapping identifies the features through 
which different implementations of the objects are made available to object managers using 
the map subprogram. The specification for a conforming object manager signature is specified 
as a child package of Compositionjnterface. The parent-child composition denotes that the 
Signatures package applies to all object managers of this type and has the following form. 

package Composition_Interface.Sigi\atures is 

type FeatureJType is ...; 
... — other features 

type SignatureJType is abstract tagged limited private; 
type Signature_Access is access all SignatureJType'Class; 

procedure Service 
(Control: access SignatureJType;...) is abstract; 

... — other services 

function Map 
(Options : Feature JType;...) return Signature_Access; 

... — other signatures 
Feature_Set_Not_Implemented: exception; 

private 
type SignatureJType is abstract tagged limited null record; 

end Composition_lnterface.Signatures; 

In contrast to object managers, there is only a single Signatures package for each 
Compositionjnterface package. For each reusable object of the domain, an abstract type, 
SignatureJType, is declared together with the corresponding services that are to be called by 
the object managers. These services are declared as abstract subprograms. Only one 
abstract type and one subprogram is shown; however, typically there will be many abstract 
types, each having many subprograms. An exception is defined for valid implementation 
feature sets for which there is no implementation available. 

Associated with the abstract types are the features used to select alternative implementation 
schemes. The way in which features are specified is not defined in the mapping; the only 
requirement is that for those combinations of features that determine an implementation of a 
reusable object, a Map subprogram must be declared to return an object through which the 
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corresponding subprograms can be called. Thus, unless a Map subprogram is declared with 
the desired Feature_Types as formal parameters, there is no authorized way in which the 
corresponding implementation alternative can be called by the object managers. The template 
for the Signatures body comprises the implementation of the Map subprograms as follows: 

with Compositionjnterface. Implementations; 

package body CompositionJnterface.Signatures is 

function Map 
(Options : Feature_Type;...) return Signature_Access is 

begin 
return Implementations.Map(Options,...); 

exception 
when others => 

raise Feature_Set_Not_Implemented; 

end Map; 

end Composition_Interface.Signatures; 

The above template depends upon a private child package, Implementations, as described in 
the next section. It is through the mapping of Implementations that the fundamental reusable 
assets of the domain are made accessible to the object managers by calling the Map 
subprogram. This subprogram in turn calls the corresponding Map subprogram provided by 
Implementations; if no corresponding subprogram exists then the feature combination has no 
implementation and an exception is raised. 

A.4    Implementations Mapping 
The implementation objects accessible to an object manager are mapped through a private 
child to the Compositionjnterface package. Consequently, as a private child, the 
implementation objects cannot be accessed outside the Compositionjnterface and its child 
unit hierarchy. Each implementation object is mapped as a value of a nonabstract derivative 
type of a signatures type. The derivative type, lmplemented_Type, is extended to include 
components of those features that are used to select the implementations of the abstract 
subprograms for the signatures type. 

Each of the abstract subprograms declared for the signatures type is overridden with a 
subprogram of the corresponding implemented type. In addition, a Map subprogram is 
declared for each combination of features that may be used to select this implemented type; 
the subprogram profiles must correspond directly to their signatures types counterparts. 

with Composition_Interface.Signatures; 

private package Composition Jnterface.Implementations is 
type Implemented_Type is new Signatures.SignaturesJType with private; 
procedure Sen>ice(Control: access ImplementedJType;...); 

function Map(Options : SignatuTes.Feature_Type;...) return Signatures_Access; 
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... other implemented types 

private 
type Implemented_Type is new Signatmes.Signatures_Type with 

record 
Feature: Sigmtures.FeatureJType; 

end record; 
end Composition_Interface.Implementations; 

with DomainjObjects,...; 
package body CompositionJnterface.Implementations is 

procedure Service 

(Control: access Implemented_Type;...) is 

begin 
...use services provided by Domain_Objects 

end Service; 

function Map 
(Options : SignatuTes.Feature_Type;...) return Signature_Access is 

begin 

return new Implemented_Type'(Signature_Type with Options,...); 

end Map; 
end Composition_lnterface.Implementations\ 

Implement Abstract type-class 

child 
Object Manager 

X spec -> spec 

chUd 
Signatures 

spec -> S] pec     A             X body -> spec 

pvt child 
Implementations M ^ 

Encapsulate 
& Extend Type-Class 

A -> B : A semantically depends on B 

Figure A-3:   Composition Tier Conceptual Mapping 
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Figure A-3 illustrates the various templates and their interdependencies that comprise the 
composition tier mapping. While not explicitly included in the mapping, additional templates 
may be specified to compose object managers from other object managers when there is a 
significant overlap in their implementations. 

A.5    Composing an Abstract Object 

The various constructs presented in the previous subsections may be applied to develop the 
example composition illustrated in Figure A-2. To provide additional context, it is assumed that 
the purpose of the controller is to provide a conversion between objects that are represented 
by the Abstract Syntax Notation One (ASN.1) protocol and objects that are represented by the 
External Data Representation (XDR) protocol [Meyers 93]. The example object manager and 
its signatures are shown below. 

with System; 
package Remote_Object_Interface is 

type Remote_Object is abstract tagged private; 
procedure Read 

(Obj: Remote_Object; Adr : out System.Address; Len : out Positive) is abstract; 

procedure Write 
(Obj: Remote_Object; Adr : SystemAddress; Len : Positive) is abstract; 

Read_Not_Supported, 
Write_Not_Supported : exception; 

private 
type Remote_Object is abstract tagged null record; 

end Remote_Object_Interface; 

The abstract object type RemoteJDbject is declared in Remote_Object_lnterface, one of the 
packages constituting the composition tier. Two subprograms, Read and Write, are declared 
through which all object managers derived from this type may be manipulated by controllers. 

package Remote_Object_Interface.Signatures is 
type Protocol_Type is (ASN, XDR); 
type Transfer_Type is (TCP, UDP); 
type Endpoint_Type is abstract tagged limited private; 
type Endpoint_Type_Access is access all Endpoint_Type' Class; 

function Map 
(Protocol: Protocol_Type; Transfer: TransferJType) return Endpoint_Type_Access; 

procedure Read 
(Obj: access Endpoint_Type; Adr : out System.Address; Len : out Positive) is abstract; 

procedure Write 
(Obj : access Endpoint_Type; Adr: System.Address; Len : Positive) is abstract; 

Feature_Set_Not_Implemented: exception; 

private 
type Endpoint_Type is abstract tagged limited null record; 

endRemote_Object_Interface.Signatures; 

CMU/SEI-96-TR-017 47 



The child signatures package of the Remote_Object_lnterface package describes the features 
associated with the remote object. In this example, the domain includes two data 
representation protocols, ASN and XDR, and two transport layer protocols, TCP and UDP. 
Each remote object is associated with an endpoint to which the different protocols may be 
assigned. The Map subprogram is declared to obtain a reference to an endpoint message 
reader/writer with the required protocols. 

withRemote_Object_Interface.Signatures; 
package Remote_Object_Interface.Object_Reader is 

type Reader is new Remote_Object with private; 

private 
type Reader is new Remote_Object with record 

Rdr: Signatures.Endpoint_Type_Access 

:= Signatures.Map(Signatures.ASN, Signatures.TCP); 

end record; 
procedure Read (Obj: Reader; Adr: out System.Address; Len : out Positive); 

procedure Write (Obj : Reader; Adr : System.Address; Len : Positive); 

endRemote_Object_Interface.Object_Reader; 

withRemote_Object_Interface.Signatures; 
package Remote_Object_Interface.Object_Writer is 

type Writer is new Remote_Object with private; 

private 
type Writer is new Remote_Object with record 

Wtr: Signatures.Endpoint_Type_Access 
:= Signatures.Map(Signatures.XDR, Signatures.UDP); 

end record; 
procedure Read (Obj: Writer; Adr : out System.Address; Len : out Positive); 

procedure Write (Obj: Writer; Adr : System.Address; Len : Positive); 

end Remote_Object_Interface.Object_Writer; 

Two child packages of Remote_Object_lnterface declare derivations of Remote_Object as 
object manager types for reading and writing data. The object manager types, Reader and 
Writer, are extended with an endpoint type component, show below. The default initialization 
of the object manager types call the Map subprogram from the Signatures package to create 
a message reader or writer for the endpoint depending upon the requested features. In this 
way, object managers may be declared for reading or writing remote objects with different 
protocols. 

package body Remote_Object_Interface.Object_Reader is 

procedure Read (Obj: Reader; Adr : out System.Address; Len : out Positive) is 

begin 
Signatures.Read(Obj.Rdr, Adr, Len); 

end Read; 
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procedure Write (Obj: Reader; Adr : System.Address; Len : Positive) is 

begin 
raise Write_Not_Supported; 

end Write; 
endRemote_Object_Interface.Object_Reader; 

package body Remote_Object_Interface.Object_Writer is 

procedure Write (Obj : Writer; Adr: System.Address; Len : Positive) is 

begin 
Signatures.Write(Obj.Wtr, Adr, Len); 

end Write; 
procedure Read (Obj: Writer; Adr : out SystemAddress; Len : out Positive) is 

begin 
raise Read_Not_Supported; 

end Read; 
endRemote_Object_Interface.Object_Writer; 

The implementations of Read and Write for the object managers call the corresponding 
subprograms using their assigned message reader and message writer from the Signatures 
package. In this example, the message reader may not write, and similarly, the message writer 
may not read; an attempt to do so raises an exception. 

withRemote_Object_Interface.Implementations; 

package body Remote_Object_Interface.Signatures is 

function Map 
(Protocol: Protocol_Type; Transfer: TransferJType) return Endpoint_Type_Access is 

begin 
return Implementations.Map(Protocol, Transfer); 

exception 
when others => 

raise Feature_Set_Not_Implemented; 

end Map; 
endRemote_Object_Interface.Signatures; 

The implementation of the Map subprogram in the Signatures package body calls the 
corresponding subprogram from the Implementations package. If there is no implementation 
available for the requested protocols, an exception is raised. 

withRemote_Object_Interface.Signatures; 
useRemote_Object_Interface.Signatures; 

private package Remote_Object_Interface.Implementations is 

type TCP_Type is new Endpoint_Type with private; 
type UDP_Type is new Endpoint_Type with private; 

function Map 
(Protocol: Protocol_Type; Transfer : TransferJType) return Endpoint_Type_Access; 

private 
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type TCPJType is new Endpoint_Type with record 
Protocol: Protocol_Type; 
Transfer: Transfer_Type; 

end record; 
type UDP_Type is new Endpoint_Type with record 

Protocol: Protocol_Type; 

Transfer: TransferJType; 

end record; 
procedure Read 

(Obj : access TCPJType; Adr : out System.Address; Len : out Positive); 

procedure Write 
(Obj : access TCPJType; Adr : System.Address; Len : Positive); 

procedure Read 
(Obj : access UDPJType; Adr : out System.Address; Len : out Positive); 

procedure Write 
(Obj : access UDPJType; Adr : System.Address; Len : Positive); 

end Remote_Object_Interface.Implementations; 

The implementation of endpoint type is extended to include the protocol and transfer features 
for the message reader/writer object managers in a private child of Remote_Object_lnterface. 
For each combination of supported features, a specific type is declared with corresponding 
overriding subprograms. In this example, it is known that readers will use TCP/ASN and 
writers will use UDP/XDR for this application. 

with TCP, UDP, ASN, XDR; - domain objects 
package body Remote_Object_Interface.Implementations is 

function Map 
(Protocol: ProtocolJType; Transfer: TransferJType) return Endpoint_Type_Access is 

begin 
if Protocol = ANS and Transfer = TCP then 

return new TCPJType' (EndpointJType with ASN, TCP); 

elsif Protocol = XDR and Transfer = UDP then 
return new UDPJType'(EndpointJType with UDP, XDR); 

else 
raise Feature_Set_Not_Implemented; 

end if; 
end Map; 
procedure Read 

(Obj: access TCPJType; Adr : out System.Address; Len : out Positive) is... 

procedure Write 
(Obj: access TCPJType; Adr : System.Address; Len : Positive) is... 

procedure Read 
(Obj : access UDPJType; Adr : out System.Address; Len : out Positive) is... 

procedure Write 
(Obj: access UDPJType; Adr : System.Address; Len : Positive) is ... 

endRemote_Object_Interface.Implementations; 
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The body of the package depends upon the objects from the application domain to implement 
the supported features: namely, TCP, UDP, ASN, and XDR. The Map subprogram creates and 
returns a reference to a message reader/writer object. In this example, the components in the 
endpoint type extension are initialized but are not used. Each overriding endpoint subprogram 
is assumed to be implemented using the facilities provided by the domain objects. In this way, 
the corresponding subprograms in the composition interface dispatch to the appropriate 
implementation using the message reader/writer object to which they have been mapped. 
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Appendix B     Connection Tier 
The principal requirement motivating the connection tier is to provide a disciplined method for 
combining the services of object manager components into reusable abstractions called 
controllers. Controllers allow a domain application to be modeled as a group of subsystems 
that may be called through their corresponding interfaces. In a manner similar to that 
presented in the composition tier, the method allows these interfaces to have multiple 
implementations reflecting both the functional commonality and variability derived from the 

domain models. 

The connection tier comprises templates for controllers, connectors, and coordinators. A 
fundamental property of cooperating subsystems is that there is no direct interaction among 
their respective controllers. All data are exchanged among subsystems through a connector 
abstraction whose interface includes the essential Export and Import services. The connector 
template provides support for connecting subsystems using either remote or shared 
connectors. This is explained in Section B.4. An additional abstraction, termed a coordinator, 
is provided by the revised mapping to facilitate coordination within a subsystem. This is 

explained in Section B.5. 

It is at this tier of reuse that the notion of distributed objects, as described in the body of this 
report, is introduced to allow an application to be partitioned across a network of processing 
resources. Each subsystem interface is inherited from a controller type-class that may be used 
to declare controllers as distributed objects. The abstract interface associated with the 
controller type-class provides a subsystem interface for which multiple implementations may 
exist. Each controller type is declared within a library package to encapsulate the 
implementation. This library package, together with its semantic dependencies, forms the 
subsystem. 

Figure B-1 informally illustrates the conceptual framework of the connection tier. In this 
illustration, the subsystem interfaces are shown as distributed objects declared with different 
controller implementations (denoted by the shading of the rectangle). Each of these 
implementations is constructed from one or more object managers from the composition tier. 
Connectors appearing between the different subsystems illustrate their role as conduits for 
disciplined data exchange between subsystems; the use of broken lines conveys the 
dynamism inherent in their use. 

Consistent with the properties of a distributed object, the services specified in the abstract 
interface of a controller type-class may be called from an address space (or processing 
resource) that is different from where the call originates. Hence, a controller object provides a 
flexible approach to situating subsystems on a network of processing resources. The mapping 
for subsystems requires that their constituent object managers be situated in the same 
address space (or processing resource) because object managers referenced by a controller 
must be named explicitly as semantic dependencies and their services called using normal 
(local) subprogram calls. 
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Figure B-1:   Connection Tier Dependencies 

B.1    Connection Interface Mapping 
The mapping for the connection interface comprises the type-classes for subsystem 
controllers and connectors. The form of the Connectionjnterface package is as follows: 

package Connectionjnterface is 

pragma Pure; 
type Connectorjd is range ...; 
type Subsystemjd is range ...; 
type Subsystem JHonnector 

(Connector : Connectorjd) is abstract tagged limited private; 
type Subsystem_Controller 

(Subsystem : Subsystemjd) is abstract tagged limited private; 

Connection_Interface_Error: exception; 
private 

type Subsystem_Connector 
(Connector : Connectorjd) is abstract tagged limited null record; 

type Subsystem_Controller 
(Subsystem : Subsystemjd) is abstract tagged limited null record; 

end Connectionjnterface; 

Through these type declarations, different subsystem controller and connector types are 
derived in child packages. The configuration tier depends upon this package to provide 
configuration services for controllers and connectors; this is explained in Appendix C. 
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B.2    Subsystem Controller Mapping 
"The Subsystem Controller provides a uniform interface to the underlying capabilities of the 
subsystem." [Peterson 94, page 45] 

The abstract services provided by a type-class for a controller are declared as primitive 
subprograms of an abstract type derived from the Subsystem_Controller type. This type is 
declared in a remote types package together with a general access type designating a class- 
wide type. A consequence of this mapping is to allow all subsystem services to be dynamically 
bound using remote access values as controlling operands. The Subsystem package is 
declared as a child package of the Connectionjnterface as follows: 

package ConnectionJnterface.SMfrrystem is 

pragma Remote_Types; 
type AbstractjController is new abstract Subsystem_Controller with private; 

type Controller_Access is access all AbstractjController''Class; 

procedure Subsystem_Service 
(Control: access AbstractjController, Param :...) is abstract; 

private 
type AbstractjController is new abstract Subsystem_Controller with null record; 

endConnectionJnterface.Swfcyy.yfem; 

In the above specification, there may be one or more abstract subprograms declared to 
represent the services supplied by the types derived from the type Abstract_Controller. 
Similarly, each primitive subprogram may have one or more parameters, in addition to the 
mandatory controlling access parameter. 

These services may be called from the configuration tier providing that a remote access value 
designating an object of the declared type is accessible to the executive. Since objects of type 
AbstractjController cannot be declared, any object made accessible through a remote access 
value must be declared of a type derived from Abstract_Controller in a package that 
corresponds to the package Controller. Furthermore, each inherited abstract subprogram 
must be overridden. The Controller package is declared as a child package of Subsystem as 
follows: 

package Connection_Interface.SKfryy.stem. Controller is 

pragma Elaborate_Body(Controller); 

end ConnectionJnterface.Sufc.ry.sfe/n. Controller; 

with Composition_Interface; 
withConfigurationJnterface.Executive; 

withConnection_Interface.S«fc.ry.yrem.Signatures; 

package body Connection_Interface.Sufrrystem.Controller is 

... subsystem state 
type Controller is new AbstractjController with record 
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Object_Manager: Composition_Interface.Abstract_Object_Access 

:= Signatures.Map(...); 
... other object managers 

end record; 
procedure SubsystemJService (Control: access Controller; Param :...); 

Controllerjnstance: aliased Controller; 
Controller_Instance_Access : Controller_Access := Controllerjnstance'Access; 

procedure Subsystem_Service (Control: access Controller; Param :...) is 

begin 
Compositionjnterface.Object_Service(Contro\.Object_Manager, Value,...); 

— calls to other object managers' services 

end Subsystem_Service; 

begin 
— Promote subsystem 

end Connection Jnterface.SM&ry.s'tem.Controller; 

Unlike the corresponding Object_Manager package of the composition tier, the Controller 
package specification is empty. This is a direct consequence of the desire to declare a 
controller type that supports the notion of a distributed object. The type and the distributed 
object, Controllerjnstance, are encapsulated in the package body so that references to the 
object must be provided through some means other than mentioning the package as a 
semantic dependency of some other unit. 

In the mapping, this reference is achieved through the services provided by the configuration 
tier. When the package elaborates, it calls the Promote_Subsystem service of the 
Configuration Jnterface.Executive to establish that there is a remote access value available to 
reference the Controllerjnstance. The exact details of promoting distributed objects are 
deferred until the discussion of the configuration tier. 

The encapsulation of a single distributed object within a package provides a mapping of a 
controller to a subsystem. The subsystem state is maintained for each subsystem by the 
execution of the services provided by its controller. Neither the state nor the subprograms 
providing the services are accessible outside of the subsystem without explicitly requesting 
the remote access value that designates the controller, since the implementation cannot be 
called without the explicit action of the subsystem to make its controller object available. Thus, 
the package Controller and the library units on which it semantically depends comprise an 
instance of a subsystem that may be used to construct a partition that may be freely situated 
on any one processing resource. In this way, the package hierarchies that are composed from 
the Connectionjnterface may be considered isomorphic to a partition; namely that each 
hierarchy is well formed so that its services may be called remotely and it may be replicated 
as a partition within a distributed application. 
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Figure B-2:   Partition Mapping 

Figure B-2 illustrates the package hierarchy and indicates that the Connectionjnterface and 
subsystem packages may be safely referenced in any partition (since they are categorized as 
pure and remote types packages respectively). In this figure, each controller variation is 
identified as a partition (however, mapping more than one controller to a partition is not 
precluded); the shaded areas denote different processing resources. 

Similar to the way in which an object manager type was extended in the composition tier, each 
controller type is extended with the object managers on which its subprograms depend.This 
is achieved through the use of a child package Signatures that is explained in the subsequent 
paragraph. Within the body of each primitive subprogram of controller there are calls to the 
appropriate object managers' subprograms that have been made available through the 
Signatures package and the Compositionjnterface. Thus, it is unnecessary for the Controller 
package to depend explicitly on each object manager that it requires for its implementation; 
only the Compositionjnterface and the Signatures packages are required. 

Depending on the processing to be performed, Subsystem_Service may use one or more of 
the object managers included in the extended controller type. Again, what is left unspecified 
in the mapping is the actual code that sequences the calls to the various subprograms of the 
object managers. 

B.3    Subsystem Signatures Mapping 

"Subsystem signatures allow the use of a subsystem's operations without explicit reference to 
(or knowledge of) the underlying objects comprising it, the specific features they provide, or 
even the names that have been chosen to represent the services at the object level." [Peterson 
94, page 17] 
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The Signatures mapping identifies the features through which object managers and their 
different implementations are made available to a subsystem controller. The specification of a 
conforming subsystem signature is declared as a child package of its corresponding 
Subsystem package; thus denoting that it applies to all Controller packages (instances of 
subsystems). The specification has the following form: 

with Compositionjnterface, ... 
package ConnectionJnterface.Sufoy.s'fem.Signatures is 

type Features_Type is... 
... — other features 

function Map 
{Options : FeatureJType;...) return Com/70Ji'«'on_/«ferface.Abstract_Object_Access; 

... — other signatures 
Feature_Set_Not_Implemented: exception; 

end Connection Jnterface.Sukry.stem.Signatures; 

While the above template declares only a single feature type, typically the Signatures package 
will declare as many feature types as required to support composing a subsystem controller 
from reusable object managers. An object manager is selected by associating each object 
manager implementation with a set of features corresponding to the services that it offers 
through the Compositionjnterface. In contrast to object manager signatures, only features 
that select different implementations of an object manager are declared since different object 
managers must be referenced through mentioning the appropriate Compositionjnterface as 
a semantic dependency in the context clause. 

The reason for this "weaker" feature orientation in the Signatures package, when compared to 
the Signatures package of the composition tier, is that the specifications of the 
Compositionjnterfaces are developed explicitly to reflect abstract services based upon the 
features from the domain models. Thus, the subsystem controllers are presented with a 
carefully specified set of reusable object managers in contrast to the less reusable objects that 
may be presented to the object managers. 

The sets of features that may be used to select instances of an object manager are used to 
specify the formal parameters of a Map subprogram; this subprogram returns an object 
through which the subprograms of the object manager may be called. When different 
implementations exist for an object manager, the implementation variations can be 
parameterized through an appropriate set of feature types. In this way, there is no reference 
nor knowledge required by the subsystem controllers about the composition of an object 
manager. Hence, unless a Map subprogram is declared with the desired feature types as 
formal parameters, there is no authorized way in which the corresponding implementation can 
be called by the subsystem controllers. The implementations of the Map subprograms are 
declared in the Signatures package body as follows: 

with Composition Jnterj'ace.Object_Manager,... 

package body Connection_Interface..S'wfe.ry.stem.Signatures is 
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function Map 
(Options : Feature_Type;...) return Composition_Interface.Abstract_Otyect_Access is 

begin 
return new Composition_Interface.Object_Manager.Ob)ect_Manager, 

end Map; 

endConnection_Interface.S«fa;y.Jtem.Signatures; 

The Signatures package body depends upon each object manager that is made available 
through the declared features. The Map implementation simply creates an object of the 
appropriate Object_Manager type; this allows controller subprograms to use different 
implementations of object managers using the Compositionjnterface since the controller type 
includes in its extension the selected implementations. 

B.4    Subsystem Connectors Mapping 

"The import structure defines the interface for data input from other subsystems.... The export 
structure defines the data output interface for use by other subsystems."[Peterson 94, page 

16] 

The abstract services provided by a type-class for a connector are declared as primitive 
subprograms of an abstract type derived from the Subsystem_Connector type; these are the 
Import and Export subprograms. Two type-classes are declared to support both remote and 
shared connectors. Through these two type-classes, subsystems may exchange data either 
using the distributed object or shared object templates depending upon how their 
corresponding partitions are to be configured to the available processing and storage 
resources.3 The mapping does not prescribe the conditions under which these templates are 
used since the choice may depend upon environmental and operational factors that are 
beyond the information included in the domain models. 

The connector mapping provides two generic child packages of Connectionjnterface named 
Remote_Connection and Shared_Connection. Each package declares a type 
Abstract_Connector with two mandatory primitive subprograms Import and Export as follows: 

generic 
type Data_Type is private; 

package Connection_Interface.Remote_Connection is 

pragma Remote_Types; 
type Abstract_Connector is abstract new Subsystem_Connector with private; 
type Connector_Access is access all Abstract_Connector'Class; 

function Import 

3- Typically, the configuration of subsystems to partitions will not be known when an application is developed. 
Thus, when this knowledge is unavailable, it is best to assume that the subsystems are to be configured in 
partitions that do not have access to a passive partition containing a shared object template. 
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(Cxn : access Abstract_Connector) return Data_Type is abstract; 

procedure Export 
(Cxn : in out Abstract_Connector; Value : Data_Type) is abstract; 

private 
type Abstract_Connector is abstract new Subsystem_Connector with null record; 

endConnection_Interface.Remote_Connection; 

generic 
type Data_Type is private; 

package Connection_Interface.Shared_Connection is 

pragma Shared_Passive; 
type Abstract_Connector is abstract new Subsystem_Connector with null record; 
type Connector_Access is access all Abstract_Connector; 

function Import 

(Cxn : access Abstract_Connector) return Data_Type is abstract; 

procedure Export 

(Cxn : access Abstract_Connector; Value : Data_Type) is abstract; 
endConnection_Interface.Shared_Connection; 

The generic forms of the packages allow the declaration of the type-classes to support the 
exchange of different data types through the declaration of the generic formal type parameter, 
Data_Type. Each instantiation provides an access type that enables a subsystem to import 
data of that type. 

Both forms include categorization pragmas. Similar to the use of the Remote_Types pragma 
in the Subsystem package, the presence of the pragma in the Remote_Connection package 
allows a general access type designating a class-wide type, Abstract_Connector'Class, to be 
declared so that the connector services may be dynamically bound using remote access 
values. Thus, connectors may be implemented as distributed objects. A subsystem may 
create from an instantiated package a connector object and make its corresponding remote 
access value available to other subsystems through the configuration tier so that objects of the 
data type may be imported independently of where the subsystems are situated. 

In contrast, the presence of the pragma Shared_Passive in the Shared_Connection package 
allows a general access type designating Abstract_Connector to be declared so that 
connector services may be dynamically bound using access values that are globally 
accessible to more than one subsystem. Thus, connectors may be implemented as shared 
objects by using an access value to a nonabstract connector type and by making this value 
available to other subsystems through the configuration tier. Objects of the data type may be 
imported providing that the subsystems have access to the shared passive package where the 
access type is declared. The requirement for global accessibility is achieved by assigning 
instantiations of Shared_Connection packages to passive partitions. Typically, passive 
partitions provide globally accessible data throughout a distributed application. Consequently, 
shared connectors are similar to the import and export abstractions that are specified for non- 
distributed applications in the original mapping. 
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An important distinction between remote and shared connectors is that both Export and Import 
subprograms for a shared connector may be called through its corresponding access value, 
while for a remote connector only the Import subprogram may be called through its 
corresponding remote access value. This distinction reflects the fact that a remote connector 
is situated with the subsystem controller that creates the connector and that calls to Export are 
always local calls (refer to Figure 6-2). In contrast, shared connectors are not situated with the 
subsystem controller that creates them; this is a consequence of declaring shared connectors 
or allocating shared connectors from access types that are declared in a shared passive 
package. A shared connector is not included in a subsystem, whereas a remote connector is 
included in a subsystem in the form of a distributed object. 

In the above templates, both connector types are abstract types, thereby precluding the 
declaration of objects of these types. The purpose of the types is to establish the remote and 
shared properties that are to be inherited in their respective type-class hierarchies and to 
provide a type-class that is available to client subsystems wishing to import data. Type 
hierarchies are declared in generic child packages and provide the implementations for the 
Export and Import subprograms by declaring nonabstract connector types. Through different 
connector implementations, subsystems may exchange data compatible with the 
requirements of a particular application. In addition, subsystems are not limited to obtaining 
data of a given type from a single subsystem. Data may be imported from any connector for 
that type that is accessible to a subsystem. Consequently, connectors may be viewed as first- 
class objects [Shaw 94a] since they support, in a sense, the software glue that is essential for 
achieving subsystem reuse. 

Different implementations for connectors are instantiated from generic child packages of 
Remote_Connection and Shared_Connection. The mapping provides default packages; 
however, other packages may be declared providing that they conform to the same 
requirements as the default packages (namely, that data are exchanged using the same 
subprograms). In the first set of default packages to be presented, the data object to be 
exported/imported is encapsulated within a protected type to ensure that access to the data is 
synchronized. Thus, whether a connector is remote or shared, the same synchronization is 
performed. Subsequently, an alternate set of packages is described that allows more flexibility 
in specifying how access to the data is synchronized. For example, it may be inappropriate to 
enforce the same synchronization upon both a remote and shared connector since limitations 
on what may be supported for a shared connector may be unacceptable for a remote 
connector. The form of this default set of generic package specifications is as follows: 

generic 
package Connection_Interface.Remote_Connection.De/aw/f_/mp/emewfafJo« is 

type Connector is new Abstract_Connector with private; 
function Import (Cxn : access Connector) return Data_Type; 

procedure Export (Cxn : in out Connector; Value : Data_Type); 
private 

protected type Cache is 
procedure Export (Value : Data_Type); 
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function Import return Data_Type; 

private 
Content: Data_Type; 

end Cache; 
type Connector is new Abstract_Connector with record 

Synchronize: Cache; 

end record; 
endConnection_Interface.Remote_Connection.Z)e/aM/r_/mp/emenfa/ion; 

generic 
package Connection_Interface.Shared_Connection.De/a«/?_/'n/?/emenfa//o« is 

pragma Shared_Passive; 
type Connector is new Abstract_Connector with private; 

type Connector_Access is access all Connector; 

function Import (Cxn : access Connector) return Data_Type; 

procedure Export (Cxn : access Connector; Value : DataJType); 

private 
protected type Cache is 

procedure Export (Value : DataJType); 
function Import return DataJType; 

private 
Content: DataJType; 

end Cache; 
type Connector is new Abstract_Connector with record 

Synchronize: Cache; 

end record; 
endConnection_Interface.Shared_Connection.De/aw/r_//w/j/eme/Jtorion; 

The above templates are declared as generic packages, although there are no formal 
parameters declared. There are two reasons for this: (1) generic packages may have only 
generic child packages; and (2) frequently, as will be shown later, it will be useful to include 
generic formal parameters to tailor the implementations for connectors. It should be noted that 
the generic formal parameter of the parent may be referenced within the child unit as if it were 
declared as a formal parameter of the child package. 

Each package derives a nonabstract type extension from the connector type-class and 
encapsulates within a protected type component the data object that is associated with the 
connector. This protected type precludes exporting a value if there is an import in progress; 
however, values may be exported concurrently. This restricted course-grained 
synchronization follows from the language restrictions necessary to safeguard the 
preelaboration guarantee of a shared passive package. These restrictions disallow the use of 
more capable constructs such as entry queues. However, as a default implementation, the 
entryless protected type provides the minimum safety essential for a reusable connector type. 
In addition to the extended type, a general access type is declared in the child of 
Shared_Connection (which must be a shared passive package), designating the extended 
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type so that objects of the type may be dynamically allocated and references to them managed 
through the configuration tier. 

The creation of a connector type-class hierarchy requires a two-step instantiation process. 
Initially the abstract type-class must be declared for the particular data type, and then a 
suitable implementation of the connector must be instantiated as a child of the first 
instantiation. For example, if an Integer data type (with the default implementation) is to be 
exchanged among subsystems using a shared connector template, it would be necessary to 
complete the following two instantiations: 

withConnection_Interface.Shared_Connection; 
package Local_Integer_Connection is new Shared_Connection(Integer); 

pragma Shared_Passive (Local_Integer_Connection); 

withConnection_Interface.Shared_Connection.De/aM/f_/mp/ementorion; 

package Local_Integer_Connection .Default 
is new Local_Integer_Connection.De/au//_/mp/e/nentorio/i; 

pragma Shared_Passive (Local_Integer_Connection.Default); 

The first instantiation, Local_lnteger_Connection, is to be used by the importing client 
subsystem, whereas the second instantiation is to be used by the exporting server subsystem. 
The bodies for the remote and shared packages are identical except for the difference 
resulting from the Export subprogram profile. The body for the default implementation of a 
shared connector is as follows: 

package body Connection_Interface.Shared_Connection.De/aM//_/mp/ementofion is 

protected body Cache is 
procedure Export (Value : Data_Type) is 

begin 
Value := Content; 

end Export; 
function Import return DataJType is 
begin 

return Content; 
end Import; 

end Cache; 
function Import (Cxn : access Connector) return DataJType is 
begin 

return Cxn.Synchronize.Import; 

end Import; 
procedure Export (Cxn : access Connector; Value : DataJType) is 
begin 

Cxn.Synchronize.Export(Value); 

end Export; 

endConnection_Interface.Shared_Connection.De/au/f_/mp/ementorion; 
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B.5    Subsystem Coordinators Mapping 

"In the OCA, the coordination model is realized in rules and templates that determine how the 

building blocks interact with one another." [Peterson 94, page 13] 

The coordination services for subsystems are provided through the Initialize and Finalize 
subprograms of a limited controlled type, Coordinator, that is declared in the child package 
Coordination of Connectionjnterface. Execution of these subprograms results in the specified 
coordination to be performed using the primitive subprograms of a class-wide access 
discriminant Agent associated with the type Coordinator. Both controllers and connectors may 
use coordinators to implement a coordination scheme that is appropriate to the services that 
are supported. In this way, a subsystem may coordinate concurrent calls from the 
configuration tier, and connectors may synchronize access to data that are to be exchanged 
among subsystems. This coordination is performed within a subsystem and not across 
subsystems; the latter form of coordination is provided through the configuration tier. 

The mapping does not explicitly specify the manner in which a controller or connector uses a 
coordinator since this depends upon the kind of service or services supported. For example, 
in some instances there is no need for coordination. The assumption is that when coordination 
is required, the controller or connector type may be extended to include an Agent component 
to achieve coordination. Subsequently, the use of a coordinator in the implementation of a 
connector is shown as an example of how the previously specified default synchronization 
scheme may be replaced by a generic synchronization scheme. A coordinator type is derived 
from the predefined Ada controlled type in a child package Coordination as follows: 

with Ada.Finalization; use Ada.Finalization; 

package Connection_Interface.Coordination is 
type Agent is abstract tagged limited private; 
type Coordinator 

(Agent: access Agent'Class) is new Limited_Controlled with null record; 

private 
procedure Engage (Opn : access Agent) is abstract; 
procedure Disengage (Opn : access Agent) is abstract; 
procedure Initialize (Cdr : in out Coordinator); 

procedure Finalize (Cdr: in out Coordinator); 
end Connection_Interface.Coordination; 

Because the coordinator type is a derivative of Limited_Controlled, there is a language 
guarantee that objects of the type are initialized (using Initialize) upon creation and are 
Finalized (using Finalize) upon reclamation. This guarantee is the key to achieving 
coordination; however, it introduces an irregularity in the mapping in that the coordinator type 
cannot be declared as an abstract type in the Connectionjnterface package. In the above 
specification, the Agent discriminant provides two abstract coordination services, Engage and 
Disengage, that are called in the bodies of Initialize and Finalize. Whenever coordination is 
required by a controller or connector service, the respective type includes a suitable Agent 
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component whose coordination services are called by simply declaring a local coordinator in 
the service to be coordinated. The declaration of a local coordinator guarantees that the 
Engage coordination is performed during elaboration of the subprogram body and that the 
Disengage coordination is performed prior to leaving the scope of the local coordinator. A 
minimal implementation of the Coordination package body has the following form: 

package body ConnectionJnterface.Coordination is 

procedure Initialize (Cdr : in out Coordinator) is 

begin 
Engage (Cdr.Agent); 

end Initialize; 
procedure Finalize (Cdr : in out Coordinator) is 

begin 
Disengage (Cdr.Agent); 

end Finalize; 
end Connection_Interface.Coordination; 

In the case of the connector Import and Export subprograms, a coordinator might be used as 
follows to implement a remote connector (a language restriction on the semantic 
dependencies of a shared passive package precludes its use to implement a shared 
connector). An example Remote_Connection package with coordination is given below: 

with ConnectionJnterface.Coordination; use Connection_Interface.Coordination; 

generic 
type Scheme is new Agent with private; 

package Connection_Interface.Remote_Connection.Coorrfmaferf_//n/7/emenfafion is 

type Connector is new Abstract_Connector with private; 
3     function Import (Cxn : access Connector) return Data_Type; 

procedure Export (Cxn : in out Connector; Value : Data_Type); 

private 
type Connector is new Abstract_Connector with record 

Content: Data_Type; 

Coordinate: aliased Scheme; 

end record; 
endComection_lnterf&ceRemote_Conriect\on.Coordinated_Implementation; 

package body Connection_Interface.Remote_Connection.Coorrfi'/iafed_/m/7/ementorion is 

function Import (Cxn : access Connector) return Data_Type is 
Synchronize : Coordinator (Cxn.Coordinate'Access); 

begin 
return Cxn.Content; 

end Import; 
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procedure Export (Cxn : in out Connector; Value : Data_Type) is 

Synchronize : Coordinator (Cxn.Coordinate'Access); 

begin 

Cxn.Content := Value; 

end Export; 
endConnection_Interface.Remote_Connection.Coo/-^'narerf_/m/7/emenrario/i; 

The above template provides a number of advantages compared with the earlier default 
implementation for a shared connector. The primary advantage is that it allows coordination 
schemes to be inherited and their implementations parameterized independently of the 
services that are to be coordinated. For example, in the case of a connector, the coordination 
is separated from the data type that is associated with the connector. In this way, the 
coordination scheme can be modified without requiring changes to the services. The template 
specifies a formal parameter Scheme as the coordination scheme to be employed. Since it is 
a type in the Agent type-class the abstract coordination subprograms, Engage and Disengage, 
may be implemented as required. 

It is important to illustrate the specification of how a coordination scheme is implemented using 
this template, although this is not strictly an integral part of the mapping. In the following 
example, a coordination scheme is used that is similar to the synchronization of the default 
implementation specified for a shared connector. 

package Connection_Interface.Coordination.Coordmarion_Sc/ieme is 

type Agent_Wrapper is new Agent with private; 

private 
protected type Synchronize is 

entry Block; 
procedure Unblock; 

private 
The_Barrier: Boolean := False; 

end Synchronize; 
type Agent_Wrapper is new Agent with record 

Scheme: Synchronize; 

end record; 
procedure Engage (Opn : access Agent_Wrapper); 
procedure Disengage (Opn : access Agent_Wrapper); 

endConnection_Interface.Coordination.Coorcfmaft*on_Sc/ieme; 

The type Agent_Wrapper provides a convenient means to encapsulate a protected object that 
implements the synchronization using a simple block/unblock scheme. This type may now be 
used to instantiate the generic unit Coordinatedjmplementation as follows: 

withConnection_Interface.Remote_Connection; 

package Remote_Integer_Connection is new Remote_Connection(Integer); 

pragma RemoteJTypes; 
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withConnection_Interface.Coordination.Coordination_Scheme; 
withConnection_Interface.Remote_Connection.Coo/-rfmaferf_/m/7/ementofion; 

package Remote_Integer_Connection.Coordinated 
is new Remote_lnteger_Connection.Coordinated_Implementation 

(Scheme =>Connection_Interface.Coordination.Coorrfmarion_5c/iemc.Agent_Wrapper); 

pragma Remote_Types; 

The above instantiations are similar to the ones previously presented for a shared connector. 
The only difference is in the second instantiation that creates a remote connector; it has been 
parameterized with a coordination scheme to provide a synchronization scheme that is 
equivalent to that embedded in the shared connector. This synchronization is achieved by 
providing an appropriate body for the package Coordination_Scheme as follows: 

package body Connection_Interface.Coordination.Coordwafi'on_Sc/ieme is 

protected body Synchronize is 
— block/unblock implementations 

end Synchronize; 
procedure Engage (Opn : access Agent_Wrapper) is 
begin 

Opn.Scheme.Block; 

end Engage; 
procedure Disengage (Opn : access Agent_Wrapper) is 
begin 

Opn.Scheme.Unblock; 

end Disengage; 
endConnection_Interface.Coordination.Coorfifmaft'o/i_5c/ieme; 

An advantage of using this template is that the coordination scheme providing the 
synchronization is associated with the type of the object rather than the object services. 
Consequently, all types within a connector type-class hierarchy may have overridden 
subprograms that are synchronized consistently. When there are many services, such as is 
likely for controllers, associating synchronization with the type facilitates a potentially more 
uniform coordination model. 

B.6    Summary of the Connection Tier Mapping 

The preceding sections have presented the connection tier incrementally in terms of the 
controller, connector, and coordinator objects that are specified in the partial mapping. The 
informal illustration of the mapping in Figure B-1 may be refined to show more accurately the 
various templates specified in the mapping and their interdependencies. 
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In Figure B-3, the partial mapping dependencies are focused upon the role of the controller 
abstraction. The distinction between remote and shared connectors is hidden to simplify the 
figure. 

Signatures 

(Composition       | 
g     ) 

Controller 

Coordination 

J  Implementation     £- 

I 
Scheme 

Figure B-3:   Dependencies Between the Connection Tier Templates 

The dashed lines indicate a generic template where the controller is dependent upon an 
instance of the template rather than the generic template itself. For example, in order for a 
controller to export data, an instance of the required Implementation for the appropriate type 
must be referenced. Whereas, in order for a controller to import data, only an instance of the 
required connector for the appropriate data type must be referenced. In this latter case, the 
importation of data should be unconcerned with where data are located or what specific 
implementation has been used for the connector. 
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Appendix C     Configuration Tier 
"We also maintain that the major source of developing applications for heterogeneous 
machines is not implementing the basic data operations, which are hidden in the task's code, 
but rather in making use of available resources: loading and executing programs in the 
different processors, routing data, reconfiguring the application etc." [Barbacci 93] 

The principal requirement of the configuration tier is to provide a disciplined method for 
coordinating and sequencing the services of reusable subsystems to build domain specific 
applications. This requirement is supplemented by derived requirements to (1) support the 
configuration and reconfiguration of subsystem controllers and connectors, (2) improve both 
processing resource utilization and fault tolerance, and (3) provide start-up and termination of 
an application. Unlike the existing mapping, specific patterns for coordinating subsystems are 
not specified; instead, a more flexible approach is adopted that allows the mapping to exploit 
the full range of Ada 95 capabilities for coordinating and sequencing a multi-threaded (task) 
environment. It is beyond the scope of the revised mapping to specify the numerous options 
that are available for coordinating subsystems since such coordination is domain dependent. 

The configuration tier mapping allows this coordination to be achieved in a way that is 
consistent with the connection tier mapping; namely that different subsystem implementations 
may be used without changing the executive or subsystem controllers. This consistency is 
achieved by providing a set of services to the connection tier through which the executive 
obtains the necessary information to accomplish the desired subsystem utilization. The 
following paragraphs outline the essential services provided by the configuration tier interface. 
Subsequent sections explain these services in more detail and describe the corresponding 
templates. 

In order for the services of a subsystem to be called at the configuration tier, the controller 
associated with the subsystem must register and promote itself by communicating with the 
executive; this action is termed promoting a subsystem. Once a subsystem is promoted, the 
controller object (a remote access value designating the controller) may be used within the 
executive to call its corresponding services. A subsystem may choose to suspend or terminate 
its availability within an application, in which case it unregisters itself with the executive; this 
action is termed demoting a subsystem. Depending upon the implementation of the controller, 
a subsystem may promote and demote itself as required. The services of a demoted 
subsystem may not be called at the configuration tier since the associated partition may have 
terminated; alternatively, a subsystem may have detected some internal condition requiring 
that its services be temporarily suspended (e.g., while it performs storage reclamation). 

Similarly, in order for the Import service of a connector to be called by different subsystems, 
the controller creating the connector must register the connector with the executive; this action 
is termed publicizing a connector. A complementary action termed privatizing a connector 
unregisters a publicized connector; in this way, a controller may limit the subsystems having 
access to the connector. When a subsystem requires data from another subsystem (i.e., it 
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needs to import data), it requests a connector object from the executive; this action is termed 
realizing a connector. Once a connector object has been realized it may be used to import data 
by the controller of the subsystem that is originating the action. There is no requirement that a 
subsystem be promoted in order to publicize or realize a connector. For example, it is 
permissible for an application to be developed where there is no need for a particular 
subsystem's services;4 that is, the subsystems execute independently of the executive except 
to publicize and realize connectors. 

Figure C-1 illustrates an example of interaction between configuration and connection tiers. 

Subsystem Service 

•MV* 

Subsystem A 

(       w /j    — - ^ Publicize 

Promote J 

^   Executive      fy,//,Ä 

''"SSSSSSSSSSSSSS/^ 

Configuration Interface 

Realize 

Subsystem B 

Subsystem C 

J 
Connector Service 

Connection Interface 

Figure C-1:   Interaction Between Configuration & Connection Tiers 

In this figure, three subsystems are shown calling the configuration interface to the executive. 
One subsystem promotes itself, one subsystem publicizes a connector, and one subsystem 
realizes a connector. As a consequence, the only allowable connection interface calls are the 
ones shown. The executive may call the subsystem services of the controller for the promoted 
Subsystem A and the connector service (Import) may be called by the controller of Subsystem 
B that realized the publicized connector by Subsystem C (it is assumed that the publicized and 
realized connectors are type compatible in this instance). 

C.1    Configuration Tier Interface Mapping 

The template for the configuration interface comprises remote class-wide access types 
designating objects in the subsystem controller and connector type-classes. Values of the 
declared types may therefore reference any distributed object declared of a type within the 
corresponding derived type-class hierarchy. In addition, for consistency of presentation, 

4     Alternatively, a subsystem interface may have no services declared in its abstract specification. 
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System.Address is renamed for the purposes of designating shared objects; it is important to 
note that this declaration requires that package System be implemented as a Pure package 
so that it may have an invariant state. The form of the Configurationjnterface package is as 
follows: 

with System; ~ package System is pragma Pure 
with Connectionjnterface; use Connectionjnterface; 

package Configurationjnterface is 
pragma Remote_Types; 
type Promoted_Access is access all Subsystem_Controller'Class; 

type Publicized_Access is access all Subsystem_Connector'Class; 

subtype Shared_Access is System.Address; 
Configurationjnterfacejirror: exception; 

end Configurationjnterface; 

Using these type declarations, an appropriate interface is specified through which subsystem 
controllers may call the executive. 

C.2    Executive Mapping 
"The executive provides the operating environment for the subsystems within the application 
and, in most cases, is the arbitrator over conflicts between processes competing for time and 
access to shared resources." [Peterson 94, page 19] 

The services provided by the executive are declared in a remote call interface package as 
statically bound remote subprograms. The services support promoting and demoting 
subsystem controllers, and publicizing, privatizing, and realizing connectors. The following 
generic child package executive outlines a specification of this interface: 

generic — domain specific parameterization 

package Configuration JnterfaccExecutive is 

pragma RemoteJTall Jnterface; 

type Partition Jd is range ...; 
function Register JJubsystem 

(Name : Subsystem J'Jame) return Subsystem Jd; 

procedure Promote^Subsystem 
(Controller : Promoted_Access; Subsystem : Subsystem Jd; Partition : Partition Jd); 

procedure Demote JSubsystem (Controller : Promoted_Access); 

— Remote connector support 

function Register_Connector 
(Name : ConnectorJ^Jame) return Connectorjd; 

procedure PublicizeJUonnector 
(Connector : Publicized_Access; Connection : Connectorjd; Partition : Partition Jd); 

function RealizeJ3onnector 
(Name : ConnectorJIame; Inherit: Publicized_Access := null) return Publicized_Access; 

procedure Privatize JTonnector (Connector : Publicized_Access); 
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— Local connector support 
procedure Publicize_Connector 

(Connector : Shared_Access; Connection : Connectorjd; Partition : Partitionjd); 

function Realize_Connector 
(Name : Connector_Name; Inherit: Shared_Access := 0) return Shared_Access; 

procedure Privatize_Connector (Connector : Shared_Access); 

... — other domain specific services 

Invalid_Connector, 

Invalid_Subsystem : exception; 
end Configuration Jnterface.Executive; 

The executive is declared as a generic unit to allow multiple instantiations. No formal 
parameterization is specified so that only identical copies of the executive may be executed. 
This permits configuration tier redundancy when required by fault-tolerant applications. Since 
a single instantiation of a remote call interface package may be assigned to only one partition, 
the implementation of subsystem controllers must name the executive(s) instantiations on 
which they semantically depend. As a consequence, calls to the services provided by the 
executive are statically bound; thus, unlike controllers, instances of executives are not 
declared as distributed objects. 

The fact that the executive is not a distributed object is fundamental to the mapping. This 
allows an application to be started by initiating the executive once its partition has completed 
elaboration with the assurance that the statically bound remote calls for its services will not 
require intervention of an intermediary partition. In this way, the executive services provide a 
straightforward approach for bootstrapping a distributed application. Each subsystem 
controller is allowed by the mapping to promote itself and publicize connectors to which it 
exports data once subsystem elaboration has completed. 

When a subsystem promotes itself, it must provide to the executive some form of identification. 
Unless this identification is present, there is no convenient means for the executive to 
determine from which subsystem the call originated. Thus, prior to a subsystem controller 
promoting itself, it must register with the executive by calling Register_Subsystem. The 
subsystem provides in this call the name of the subsystem (from the application Signatures 
package) and receives a Subsystemjd that corresponds to the given subsystem name. In this 
way, different instances for the same subsystem may be managed by the executive. Each 
instance of the subsystem controller is declared with its associated discriminant providing the 
corresponding Subsystemjd. In order to declare an instance of a controller, a valid 
Subsystemjd value must be specified; otherwise the subsystem cannot be promoted. 

The specification for the Promote_Subsystem subprogram includes a formal parameter of 
Subsystemjd. Values of this type (when the attribute 'Value is applied) correspond to 
enumeration literals denoting the names of subsystems. These enumeration literals are similar 
to the corresponding specification technique used in the original mapping and are declared in 
the application Signatures package. In this way, there is no forced dependency on the different 
subsystems; the executive depends only upon the abstract controller. If a subsystem 
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promotes itself and is not specified in the Signatures package, then 'Value fails and an 
exception is raised. When there are multiple instances of the same subsystem, calls to 
Promote_Subsystem from each instance will provide the same identity; however, the value of 

the controller object will differ. 

In order to allow the executive to dynamically determine the application configuration in terms 
of subsystems assigned to partitions, the specification for the Promote.Subsystem 
subprogram includes a formal parameter of type Partitionjd. Partitionjd is declared m the 
Executive package and facilitates the executive supporting application-specific requirements 
that may depend upon available processing resources. It is expected that values of 
Partitionjd will be consistent with the values returned by the Ada 95 'Partitionjd attribute 
The following example illustrates how a subsystem controller may promote and register itself 

during its elaboration. 

with Configuration JnterfaccExecutive;... 
package body ConnectionJnterface.Sufaytfem.Confro//er is 

type Controller is... 
ControllerJnstance : aliased Controller (Subsystem => 

Executive.Register_Subsystem("This_Subsystem"); 
ControllerJnstance_Access : Controller_Access := Controllerjnstance' Access; 

begin 
Executive.PromoteJSubsystem 

(ConfigurationJnterface.Promoted_Access (ControllerJnstance_Access), 

ControllerJnstance.Subsystem, - identity of the subsystem in which Controller is declared 

ConnectionJnterface.SKfay.sfem. ConfroZ/er'Partition Jd); 

end Connection Jnterface.Sufc.ry.ytem. Controller, 

Once a subsystem is elaborated, the subsystem services may be called by the executive using 
the value of the controller operand as a controlling operand to the appropriate abstract 
subprograms. It should be noted that each subsystem must be declared with a different name; 
the string This_Subsystem" in the example is used only to illustrate a call to 
Register_Subsystem. Moreover, the technique through which the executive associates 
multiple instances of the same subsystem to the enumeration literal denoting the subsystem 
identity is not specified since this level of detail is beyond the scope of the mapping. However, 
the three parameters of the Promote.Subsystem call provide sufficient data for managing 
multiple instances of subsystem controllers. 

Similar to registering subsystems, the executive includes a subprogram declaration to support 
registering connectors. A subsystem registers a connector by calling Register_Connector and 
providing the connector's name; the returned Connector Jd may be used in subsequent calls 
to publicize this connector. The Connectorjd must be used as the discriminant value to 
declare a connector object that corresponds to the registered name. 
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Three overloaded services are declared in the Executive to support publicizing, privatizing, 
and realizing local and remote connectors. Publicize_Connector must be called whenever a 
subsystem controller wishes to permit exported data to be imported by other subsystem 
controllers. The parameters to the call include the access type (or System.Address) 
designating the connector, the connector identification (obtained from the discriminant of the 
designated object), and the Partitionjd of the partition in which the connector is located. 
Conversely, Privatize_Connector must be called when it is determined by the application that 

no further subsystem controllers may import data from a connector. 

A connector is made accessible to import data through a call to the Realize.Connector 
service The call includes the connector identification and an optional Inherit operand.The 
connector identification allows for the appropriate type and implementation of a connector to 
be specified, while the Inherit operand specifies a previously realized connector. This 
previously realized connector, when present, requires that the returned connector must have 
been publicized by a subsystem controller from the same partition (typically this will be the 
same subsystem controller). In this way, the executive may ensure that, when necessary, the 
selected imported data items originate from the same subsystem (or partition); this may be 
required if the data made available by different connectors are interrelated or depend upon a 

common state. 

The mapping for connectors distinguishes between remote and shared connectors by using 
values of the remote access type Publicized_Access or Shared_Access respectively. The use 
of a remote access type has been explained previously as an abstraction to implement 
distributed objects. In contrast, the use of Shared_Access (i.e., System.Address) is a 
mechanism, rather than an abstraction, to allow subsystem controllers to publicize access 
values designating shared connectors, since it is unacceptable to use the access type that 
designates the connector.5 As a consequence, normal type safety is forfeited by the use of 
System.Address. Values of the access type designating a local connector are converted to 
and from System.Address using an appropriate instantiation of 
System.Address_To_Access_Conversions. 

C.3    Application Signatures Mapping 
"The Applications Signatures package is the top-level namespace for the application to be 

built." [Peterson 94, page 51] 

The Signatures mapping identifies the subsystems and connectors included in an application. 
The specification of a conforming application Signatures package is declared as a child 

package of Configurationjnterface and has the following form: 

5-    This is because it is impractical to require that the executive semantically depend on all of the shared passive 
packages where shared connectors may be allocated. 
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package ConfigurationJnterface.Signatures is 

type Subsystem_Names is (...); 
type Connector_Names is (...); 

endConfigurationJnterface.Signatures; 

The two enumeration types define enumeration literals corresponding to the names of the 
application-defined subsystems and connectors. The values of attribute 'Pos applied to the 
enumeration literal corresponding to a subsystem or connector names yields the respective 

Subsystemjd or Connectorjd. 

The implementation of the executive depends upon the Signatures package. It is through the 
enumeration types that subsystem and connector names provided by the controller are 
resolved into values of Subsystemjd or Connectorjd. Each controller and connector object 
must be associated with a Subsystemjd or Connectorjd value. While this mapping provides 
flexibility, there is no safeguard to prevent a subsystem or connector object from being 
associated with an invalid value; that is, the name may be valid for some different object type. 
In this instance, it may be necessary to require that the services for the types provide some 
form of runtime detection that the discriminant is invalid. This particular issue needs further 

investigation. 
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